Suppr超能文献

TD - 12研讨会报告:神经元特异性烯醇化酶单克隆抗体的特性

TD-12 workshop report: characterization of monoclonal antibodies to neuron-specific enolase.

作者信息

Paus Elisabeth, Hirzel Klaus, Lidqvist Maria, Höyhtyä Matti, Warren David J

机构信息

Department of Medical Biochemistry, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310, Oslo, Norway.

出版信息

Tumour Biol. 2011 Aug;32(4):819-29. doi: 10.1007/s13277-011-0184-3. Epub 2011 May 14.

Abstract

Twelve antibodies to neuron-specific enolase (NSE) have been evaluated by four working groups. Human brain γγ-enolase, neuroblastoma-derived αγ-enolase, and recombinant γγ-enolase were used to determine antibody specificity and binding kinetics. All antibodies were found to be specific for the γ-isoform. It was possible to assign 11 of the antibodies to at least five epitope groups based on cross-inhibition experiments, QCM and SPR technology, and immunoassay combinations. Antibodies 9601 and 9602 showed the highest affinity for both native and recombinant γγ-enolase. Immunometric assays for both γγ- and αγ-enolase could be made by pairing 9601 with most of the other ISOBM antibodies. Antibodies differed in their ability to recognize native αγ-enolase, native γγ-enolase, and recombinant γγ-enolase. Some immunometric assay combinations appear to favor the detection of heterodimeric αγ-enolase over the homodimeric γγ-enolase. Although the majority of the antibodies failed to detect human NSE or recombinant NSE in Western blots, mAb 9601 recognized both, while E17 and 18E5 were specific for human NSE.

摘要

四个工作组对十二种抗神经元特异性烯醇化酶(NSE)抗体进行了评估。使用人脑γγ-烯醇化酶、神经母细胞瘤来源的αγ-烯醇化酶和重组γγ-烯醇化酶来确定抗体的特异性和结合动力学。发现所有抗体对γ异构体具有特异性。基于交叉抑制实验、石英晶体微天平(QCM)和表面等离子体共振(SPR)技术以及免疫测定组合,有可能将其中11种抗体至少归为五个表位组。抗体9601和9602对天然和重组γγ-烯醇化酶均表现出最高亲和力。通过将9601与大多数其他国际生物标志物标准化委员会(ISOBM)抗体配对,可对γγ-烯醇化酶和αγ-烯醇化酶进行免疫分析。抗体在识别天然αγ-烯醇化酶、天然γγ-烯醇化酶和重组γγ-烯醇化酶的能力上存在差异。一些免疫分析组合似乎更有利于检测异二聚体αγ-烯醇化酶而非同二聚体γγ-烯醇化酶。尽管大多数抗体在蛋白质免疫印迹中未能检测到人NSE或重组NSE,但单克隆抗体9601能识别两者,而E17和18E5对人NSE具有特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验