Department of Laboratory Medical Sciences, Hashemite University, Zarqa, Jordan.
Appl Physiol Nutr Metab. 2011 Jun;36(3):361-7. doi: 10.1139/h11-024. Epub 2011 May 16.
Rescue of palmitate-induced insulin resistance has been linked with improvements in fatty acid oxidation, but importantly, not always with concurrently altered AMPK or ACC2 phosphorylation. Therefore, we examined the interrelationships among AMPK, ACC2, and fatty acid oxidation under 12 controlled conditions in isolated muscle. Incubation of soleus muscle (0-12 h) did not alter fatty acid oxidation, but did increase AMPK and ACC2 phosphorylation (24%-30%). Muscle incubation with palmitate (2 mmol·L(-1)) inhibited palmitate oxidation (∼55%), but paradoxically, this was associated with increased AMPK and ACC2 phosphorylation (∼50%). Addition of an AMPK activator (thujone) to control (no palmitate) muscle increased AMPK and ACC2 phosphorylation (∼25%) but did not alter palmitate oxidation. Addition of AMPK inhibitors, compound C (50 µmol·L(-1)) or adenine 9-β-d-arabinofuranoside (Ara; 2.5 mmol·L(-1)), to thujone-treated muscles (no palmitate) did not alter palmiate oxidation but reduced AMPK phosphorylation (32%-42%), while ACC2 phosphorylation remained above basal level (+14%-18%). Finally, in palmitate-treated muscle, thujone increased AMPK (+100%) and ACC2 phosphorylation (+52%) and restored palmitate oxidation. Compound C or Ara, administered along with thujone in palmitate-treated muscle, only partly blunted palmitate oxidation recovery despite inhibiting AMPK phosphorylation (-22%), although ACC2 phosphorylation remained upregulated (+33%). Among these experiments, AMPK phosphorylation and ACC2 phosphorylation were positively correlated. However, AMPK phosphorylation was not correlated with palmitate oxidation, and unexpectedly, palmitate oxidation was negatively correlated with ACC2 phosphorylation. Our study, in accordance with a growing body of evidence, indicates that neither AMPK phosphorylation nor ACC2 phosphorylation is by itself an appropriate marker of fatty acid oxidation, and further serves to question their regulatory role.
棕榈酸诱导的胰岛素抵抗的挽救与脂肪酸氧化的改善有关,但重要的是,并不总是伴随着 AMPK 或 ACC2 磷酸化的同时改变。因此,我们在分离的肌肉中检查了 12 种受控条件下 AMPK、ACC2 和脂肪酸氧化之间的相互关系。比目鱼肌孵育(0-12 小时)不会改变脂肪酸氧化,但确实增加了 AMPK 和 ACC2 磷酸化(24%-30%)。肌肉孵育棕榈酸(2mmol·L(-1))抑制棕榈酸氧化(约 55%),但矛盾的是,这与 AMPK 和 ACC2 磷酸化的增加(约 50%)有关。向对照(无棕榈酸)肌肉中添加 AMPK 激活剂(水芹酮)增加了 AMPK 和 ACC2 磷酸化(约 25%),但不改变棕榈酸氧化。向水芹酮处理的(无棕榈酸)肌肉中添加 AMPK 抑制剂化合物 C(50μmol·L(-1))或腺嘌呤 9-β-d-阿拉伯呋喃糖苷(Ara;2.5mmol·L(-1))不改变棕榈酸氧化,但降低了 AMPK 磷酸化(32%-42%),而 ACC2 磷酸化仍保持在基础水平以上(+14%-18%)。最后,在棕榈酸处理的肌肉中,水芹酮增加了 AMPK(+100%)和 ACC2 磷酸化(+52%)并恢复了棕榈酸氧化。在棕榈酸处理的肌肉中,与水芹酮一起添加化合物 C 或 Ara 仅部分抑制棕榈酸氧化的恢复,尽管抑制了 AMPK 磷酸化(-22%),但 ACC2 磷酸化仍上调(+33%)。在这些实验中,AMPK 磷酸化和 ACC2 磷酸化呈正相关。然而,AMPK 磷酸化与棕榈酸氧化无关,出乎意料的是,棕榈酸氧化与 ACC2 磷酸化呈负相关。我们的研究与越来越多的证据一致,表明 AMPK 磷酸化和 ACC2 磷酸化本身都不是脂肪酸氧化的适当标志物,并进一步质疑它们的调节作用。