Molecular and Structural Biology Division, Central Drug Research Institute, Council of Scientific and Industrial Research, Chattar Manzil Palace, Lucknow 226001, India.
J Biol Chem. 2011 Jul 15;286(28):24828-41. doi: 10.1074/jbc.M110.209676. Epub 2011 May 18.
KvAP is a voltage-gated tetrameric K(+) channel with six transmembrane (S1-S6) segments in each monomer from the archaeon Aeropyrum pernix. The objective of the present investigation was to understand the plausible role of the S6 segment, which has been proposed to form the inner lining of the pore, in the membrane assembly and functional properties of KvAP channel. For this purpose, a 22-residue peptide, corresponding to the S6 transmembrane segment of KvAP (amino acids 218-239), and a scrambled peptide (S6-SCR) with rearrangement of only hydrophobic amino acids but without changing its composition were synthesized and characterized structurally and functionally. Although both peptides bound to the negatively charged phosphatidylcholine/phosphatidylglycerol model membrane with comparable affinity, significant differences were observed between these peptides in their localization, self-assembly, and aggregation properties onto this membrane. S6-SCR also exhibited reduced helical structures in SDS micelles and phosphatidylcholine/phosphatidylglycerol lipid vesicles as compared with the S6 peptide. Furthermore, the S6 peptide showed significant membrane-permeabilizing capability as evidenced by the release of calcein from the calcein-entrapped lipid vesicles, whereas S6-SCR showed much weaker efficacy. Interestingly, although the S6 peptide showed ion channel activity in the bilayer lipid membrane, despite having the same amino acid composition, S6-SCR was significantly inactive. The results demonstrated sequence-specific structural and functional properties of the S6 wild type peptide. The selected S6 segment is probably an important structural element that could play an important role in the membrane interaction, membrane assembly, and functional property of the KvAP channel.
KvAP 是一种四聚体钾 (K+) 通道,来自古菌 Aeropyrum pernix,每个单体都有六个跨膜 (S1-S6) 片段。本研究的目的是了解 S6 片段的可能作用,该片段被提议形成孔的内 lining,以理解 KvAP 通道的膜组装和功能特性。为此,合成并表征了一个 22 个残基的肽,对应于 KvAP 的 S6 跨膜片段(氨基酸 218-239),以及一个仅重新排列疏水性氨基酸但不改变其组成的 scrambled 肽(S6-SCR)。虽然这两种肽与带负电荷的磷脂酰胆碱/磷脂酰甘油模型膜具有相当的亲和力,但在这些肽在该膜上的定位、自组装和聚集性质方面观察到显著差异。与 S6 肽相比,S6-SCR 在 SDS 胶束和磷脂酰胆碱/磷脂酰甘油脂质体中也表现出减少的螺旋结构。此外,S6 肽表现出显著的膜通透性,如 calcein 从 calcein 包封的脂质体中释放所证明的那样,而 S6-SCR 表现出较弱的功效。有趣的是,尽管 S6 肽在双层脂质膜中表现出离子通道活性,尽管具有相同的氨基酸组成,但 S6-SCR 明显没有活性。结果表明 S6 野生型肽具有序列特异性的结构和功能特性。选定的 S6 片段可能是一个重要的结构元件,它可以在 KvAP 通道的膜相互作用、膜组装和功能特性中发挥重要作用。