Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain.
J Neurosci. 2011 May 18;31(20):7412-23. doi: 10.1523/JNEUROSCI.0191-11.2011.
Previous studies have shown that dopamine and galanin modulate cholinergic transmission in the hippocampus, but little is known about the mechanisms involved and their possible interactions. By using resonance energy transfer techniques in transfected mammalian cells, we demonstrated the existence of heteromers between the dopamine D(1)-like receptors (D(1) and D(5)) and galanin Gal(1), but not Gal(2) receptors. Within the D(1)-Gal(1) and D(5)-Gal(1) receptor heteromers, dopamine receptor activation potentiated and dopamine receptor blockade counteracted MAPK activation induced by stimulation of Gal(1) receptors, whereas Gal(1) receptor activation or blockade did not modify D(1)-like receptor-mediated MAPK activation. Ability of a D(1)-like receptor antagonist to block galanin-induced MAPK activation (cross-antagonism) was used as a "biochemical fingerprint" of D(1)-like-Gal(1) receptor heteromers, allowing their identification in the rat ventral hippocampus. The functional role of D(1)-like-Gal receptor heteromers was demonstrated in synaptosomes from rat ventral hippocampus, where galanin facilitated acetylcholine release, but only with costimulation of D(1)-like receptors. Electrophysiological experiments in rat ventral hippocampal slices showed that these receptor interactions modulate hippocampal synaptic transmission. Thus, a D(1)-like receptor agonist that was ineffective when administered alone turned an inhibitory effect of galanin into an excitatory effect, an interaction that required cholinergic neurotransmission. Altogether, our results strongly suggest that D(1)-like-Gal(1) receptor heteromers act as processors that integrate signals of two different neurotransmitters, dopamine and galanin, to modulate hippocampal cholinergic neurotransmission.
先前的研究表明,多巴胺和甘丙肽可以调节海马中的胆碱能传递,但对于涉及的机制及其可能的相互作用知之甚少。通过在转染的哺乳动物细胞中使用共振能量转移技术,我们证明了多巴胺 D1 样受体(D1 和 D5)和甘丙肽 Gal1 受体之间存在异源二聚体,但不存在 Gal2 受体。在 D1-Gal1 和 D5-Gal1 受体异源二聚体中,多巴胺受体的激活增强了 Gal1 受体刺激引起的 MAPK 激活,而多巴胺受体阻断则拮抗了这种激活,而甘丙肽受体的激活或阻断不会改变 D1 样受体介导的 MAPK 激活。D1 样受体拮抗剂阻断甘丙肽诱导的 MAPK 激活(交叉拮抗作用)的能力被用作 D1 样-Gal1 受体异源二聚体的“生化指纹”,允许在大鼠腹侧海马体中识别它们。在大鼠腹侧海马体的突触小体中证明了 D1 样-Gal 受体异源二聚体的功能作用,其中甘丙肽促进乙酰胆碱释放,但仅在 D1 样受体的共刺激下才起作用。在大鼠腹侧海马脑片的电生理实验中表明,这些受体相互作用调节海马体的突触传递。因此,当单独给予时无效的 D1 样受体激动剂会将甘丙肽的抑制作用转变为兴奋作用,这种相互作用需要胆碱能神经传递。总之,我们的研究结果强烈表明,D1 样-Gal1 受体异源二聚体作为处理器,整合两种不同神经递质多巴胺和甘丙肽的信号,以调节海马胆碱能神经传递。