Department of Physiology (EA 4484), Faculty of Medicine, University of the North of France, place de Verdun, Lille cedex 59045, France.
Clin Sci (Lond). 2011 Nov;121(9):405-13. doi: 10.1042/CS20110069.
We tested whether inhibition of mitochondrial membrane potential dissipation by CsA (ciclosporin A) would prevent doxorubicin-induced myocardial and mitochondrial dysfunction. Acute and subchronic models of doxorubicin exposition were performed in mice with either a single intraperitoneal bolus (10 mg/kg of body weight, intraperitoneal) or one injection of 4 mg·kg(-1) of body weight·week(-1) during 5 weeks. Follow-up was at 1.5 weeks and 16 weeks in acute and subchronic models respectively. Mice received either CsA (1 mg/kg of body weight, intraperitoneal on alternate days) or saline until follow-up. Heart function was evaluated by echocardiography. Mitochondrial measurements included oxygen consumption, membrane potential and externally added calcium-induced mitochondrial permeability transition. Mitochondrial mass was evaluated by transmission electronic microscopy and mtDNA (mitochondrial DNA) content. Mitochondrial dynamics were detected as the expression of GTPases involved in mitochondrial fusion and fission. In both the acute and chronic models, doxorubicin decreased left ventricular fractional shortening and survival. Heart function and survival were improved by CsA, but not by tacrolimus (FK506), a ciclosporin derivative with no inhibitory effect on the mitochondrial transition pore. In the acute model, doxorubicin exposure was associated with increased mtDNA content, mitochondrial fragmentation and changes in mitochondrial fusion- and fission-related transcripts [increases in Mfn2 (mitofusin 2), Opa1 (optic atrophy 1 homologue) and Fis1 (fission 1 homologue), and no changes in Drp1 (dynamin 1-like)]. CsA did not alter mitochondrial biogenesis, but prevented mitochondrial fragmentation and partially restored the mitochondrial energy-producing capacity. These findings suggest that in vivo CsA treatment may limit MPTP (mitochondrial permeability transition pore) opening, mitochondrial potential loss and contractile depression in acute and chronic models of cardiac toxicity induced by doxorubicin.
我们测试了 CsA(环孢菌素 A)抑制线粒体膜电位耗散是否能防止阿霉素引起的心肌和线粒体功能障碍。在急性和亚慢性阿霉素暴露模型中,分别给小鼠单次腹腔注射(10 mg/kg 体重,腹腔内)或每周 1 次注射 4 mg·kg(-1)·体重·周(-1),持续 5 周。在急性和亚慢性模型中,分别在 1.5 周和 16 周进行随访。小鼠接受 CsA(1 mg/kg 体重,每隔一天腹腔内注射)或生理盐水直至随访。通过超声心动图评估心功能。线粒体测量包括耗氧量、膜电位和外加钙诱导的线粒体通透性转换。通过透射电子显微镜和 mtDNA(线粒体 DNA)含量评估线粒体质量。通过涉及线粒体融合和裂变的 GTPases 的表达来检测线粒体动力学。在急性和慢性模型中,阿霉素降低了左心室短轴缩短率和存活率。CsA 改善了心功能和存活率,但 Tacrolimus(FK506)没有,FK506 是一种环孢菌素衍生物,对线粒体转换孔没有抑制作用。在急性模型中,阿霉素暴露与 mtDNA 含量增加、线粒体碎片化和线粒体融合-裂变相关转录物的变化有关[增加 Mfn2(线粒体融合蛋白 2)、Opa1(视神经萎缩 1 同源物)和 Fis1(裂变 1 同源物),而 Drp1(动力蛋白 1 样)没有变化)。CsA 没有改变线粒体生物发生,但防止了线粒体碎片化,并部分恢复了线粒体产生能量的能力。这些发现表明,在体内 CsA 治疗可能会限制 MPTP(线粒体通透性转换孔)的开放,防止线粒体膜电位丧失和阿霉素诱导的心脏毒性的急性和慢性模型中的收缩性抑制。