Nurmikko Arto V, Donoghue John P, Hochberg Leigh R, Patterson William R, Song Yoon-Kyu, Bull Christopher W, Borton David A, Laiwalla Farah, Park Sunmee, Ming Yin, Aceros Juan
Division of Engineering, Department of Physics, and Brown Institute for Brain Science, Brown University, Providence, RI 02912 USA.
Proc IEEE Inst Electr Electron Eng. 2010;98(3):375-388. doi: 10.1109/JPROC.2009.2038949.
Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.
以高空间和时间分辨率直接从脑微电路获取神经信号,并对其活动进行解码以解释指令和/或先前的计划活动,如手臂或腿部的运动,是现代神经技术的主要目标。其实际目标包括为那些因身体损伤或疾病而正常神经信息通路无法正常运作的受试者提供辅助设备。从基础层面来看,研究人员正在努力破译多个神经微电路的编码,这些微电路共同构成了自然界惊人的计算机器——大脑。通过将生物相容性神经传感器探头以微电极阵列的形式直接植入大脑,现在有可能在单细胞水平上以空间和时间分辨率从相互作用的神经细胞群体中提取信息。随着用于破译神经编码、提取群体或相关神经元的统计和数学技术工具应用方面的同步进展,人们已经对那些控制例如灵长类动物(猴子或人类受试者)手臂运动的大脑指令有了重要的理解。这些进展正在加速神经假体的研究工作,在神经假体中,源自大脑的信号可用于绕过例如受伤的脊髓。实现实用且通用的神经假体目标的一个关键要素是在体内开发完全可植入的无线微电子“脑接口”,这是本文特别强调的一点。