Department of Physics, Seton Hall University, 400 South Orange Ave., South Orange, NJ 07079, USA.
Biotechnol J. 2011 Jul;6(7):882-7. doi: 10.1002/biot.201000465. Epub 2011 Jun 10.
The dynamic and mechanical properties of mammalian neural microtubules have been widely studied; however, similar knowledge about these properties is limited for non-neural microtubules, which, unlike neural microtubules, consist of different β-tubulin isotypes. In this study, we report, for the first time, an estimated value for the persistence length of a single non-neural microtubule polymerized from purified tubulin from human breast cancer cell lines (MCF7 tubulin). The method of measurement is based on an analysis of the local curvature of a microtubule as a result of thermal fluctuations. In parallel, we measured the persistence length of a single bovine brain microtubule under similar conditions. The results of our measurements indicate a higher value for the persistence length of MCF7 microtubules in vitro as compared to the persistence length of a neural microtubule. The difference can be associated with different β-tubulin isotypes in the structure of MCF7 microtubules.
哺乳动物神经微管的动态和力学特性已经得到了广泛的研究;然而,对于非神经微管,类似的知识却很有限,因为非神经微管由不同的β-微管蛋白亚型组成。在这项研究中,我们首次报道了从人乳腺癌细胞系(MCF7 微管)中纯化的微管蛋白聚合而成的单个非神经微管聚合物的刚性长度的估计值。测量方法基于对微管局部曲率的分析,这是由于热波动造成的。同时,我们在相似条件下测量了单个牛脑微管的刚性长度。我们的测量结果表明,MCF7 微管在体外的刚性长度值高于神经微管的刚性长度值。这种差异可能与 MCF7 微管结构中的不同β-微管蛋白亚型有关。