National Research Centre Frontiers in Genetics, Department of Genetics and Evolution, University of Geneva, Sciences III, 1211 Geneva 4, Switzerland.
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10632-7. doi: 10.1073/pnas.1102985108. Epub 2011 Jun 13.
The emergence of Vertebrata was accompanied by two rounds of whole-genome duplications. This enabled paralogous genes to acquire novel functions with high evolutionary potential, a process suggested to occur mostly by changes in gene regulation, rather than in protein sequences. In the case of Hox gene clusters, such duplications favored the appearance of distinct global regulations. To assess the impact of such "regulatory evolution" upon neo-functionalization, we developed PANTHERE (PAN-genomic Translocation for Heterologous Enhancer RE-shuffling) to bring the entire megabase-scale HoxD regulatory landscape in front of the HoxC gene cluster via a targeted translocation in vivo. At this chimeric locus, Hoxc genes could both interpret this foreign regulation and functionally substitute for their Hoxd counterparts. Our results emphasize the importance of evolving regulatory modules rather than their target genes in the process of neo-functionalization and offer a genetic tool to study the complexity of the vertebrate regulatory genome.
脊椎动物的出现伴随着两轮全基因组加倍。这使得同源基因获得了具有高进化潜力的新功能,这一过程主要是通过基因调控的变化而不是蛋白质序列的变化来实现的。在 Hox 基因簇的情况下,这种加倍有利于出现明显的全局调控。为了评估这种“调控进化”对新功能化的影响,我们开发了 PANTHERE(通过体内靶向易位将整个兆碱基规模的 HoxD 调控景观带到 HoxC 基因簇前面的泛基因组转位用于异源增强子重新洗牌),使 Hoxc 基因可以在嵌合基因座上既能解释这种外来调控,又能替代其 Hoxd 对应物发挥功能。我们的研究结果强调了在新功能化过程中进化调控模块而不是其靶基因的重要性,并提供了一种遗传工具来研究脊椎动物调控基因组的复杂性。