Suppr超能文献

肢体肌肉的生长依赖于骨骼衍生的印度刺猬蛋白。

Growth of limb muscle is dependent on skeletal-derived Indian hedgehog.

机构信息

Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA

出版信息

Dev Biol. 2011 Aug 15;356(2):486-95. doi: 10.1016/j.ydbio.2011.06.002. Epub 2011 Jun 13.

Abstract

During embryogenesis, muscle and bone develop in close temporal and spatial proximity. We show that Indian Hedgehog, a bone-derived signaling molecule, participates in growth of skeletal muscle. In Ihh(-/-) embryos, skeletal muscle development appears abnormal at embryonic day 14.5 and at later ages through embryonic day 20.5, dramatic losses of hindlimb muscle occur. To further examine the role of Ihh in myogenesis, we manipulated Ihh expression in the developing chick hindlimb. Reduction of Ihh in chicken embryo hindlimbs reduced skeletal muscle mass similar to that seen in Ihh(-/-) mouse embryos. The reduction in muscle mass appears to be a direct effect of Ihh since ectopic expression of Ihh by RCAS retroviral infection of chicken embryo hindlimbs restores muscle mass. These effects are independent of bone length, and occur when Shh is not expressed, suggesting Ihh acts directly on fetal myoblasts to regulate secondary myogenesis. Loss of muscle mass in Ihh null mouse embryos is accompanied by a dramatic increase in myoblast apoptosis by a loss of p21 protein. Our data suggest that Ihh promotes fetal myoblast survival during their differentiation into secondary myofibers by maintaining p21 protein levels.

摘要

在胚胎发生过程中,肌肉和骨骼在时间和空间上紧密发育。我们表明,骨衍生的信号分子印度刺猬(Indian Hedgehog,Ihh)参与了骨骼肌的生长。在 Ihh(-/-) 胚胎中,骨骼肌发育在胚胎第 14.5 天和之后的胚胎第 20.5 天出现异常,后肢肌肉大量丢失。为了进一步研究 Ihh 在成肌中的作用,我们在发育中的鸡后肢中操纵了 Ihh 的表达。鸡胚后肢中 Ihh 的减少导致骨骼肌质量减少,类似于 Ihh(-/-) 小鼠胚胎中所见。肌肉质量的减少似乎是 Ihh 的直接作用,因为 RCAS 逆转录病毒感染鸡胚后肢异位表达 Ihh 可恢复肌肉质量。这些效应独立于骨长度发生,并且在 Shh 不表达时发生,表明 Ihh 直接作用于胎儿成肌细胞以调节次级成肌作用。Ihh 缺失小鼠胚胎中肌肉质量的丧失伴随着成肌细胞凋亡的急剧增加,这是由于 p21 蛋白的丢失。我们的数据表明,Ihh 通过维持 p21 蛋白水平促进胎儿成肌细胞在分化为次级肌纤维过程中的存活。

相似文献

1
Growth of limb muscle is dependent on skeletal-derived Indian hedgehog.
Dev Biol. 2011 Aug 15;356(2):486-95. doi: 10.1016/j.ydbio.2011.06.002. Epub 2011 Jun 13.
3
Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy.
Development. 2008 Jun;135(11):1947-56. doi: 10.1242/dev.018044. Epub 2008 Apr 23.
4
CARP, a myostatin-downregulated gene in CFM Cells, is a novel essential positive regulator of myogenesis.
Int J Biol Sci. 2014 Mar 6;10(3):309-20. doi: 10.7150/ijbs.7475. eCollection 2014.
5
Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein.
Science. 1996 Aug 2;273(5275):613-22. doi: 10.1126/science.273.5275.613.
6
BMP and Hedgehog signaling during the development of scleral ossicles.
Dev Biol. 2012 May 1;365(1):251-8. doi: 10.1016/j.ydbio.2012.02.016. Epub 2012 Feb 17.
7
Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity.
Genes Dev. 2012 Sep 15;26(18):2103-17. doi: 10.1101/gad.187807.112.
8
Ectopic insulin-like growth factor I expression in avian skeletal muscle prevents expression of CMD4, a novel inhibitor of differentiation.
Domest Anim Endocrinol. 2006 Nov;31(4):312-26. doi: 10.1016/j.domaniend.2005.11.007. Epub 2005 Dec 19.
9
Comparative biological responses to human Sonic, Indian, and Desert hedgehog.
Mech Dev. 2001 Aug;106(1-2):107-17. doi: 10.1016/s0925-4773(01)00427-0.
10
Hedgehog can drive terminal differentiation of amniote slow skeletal muscle.
BMC Dev Biol. 2004 Jul 6;4:9. doi: 10.1186/1471-213X-4-9.

引用本文的文献

2
Bulk and single-cell alternative splicing analyses reveal roles of TRA2B in myogenic differentiation.
Cell Prolif. 2024 Feb;57(2):e13545. doi: 10.1111/cpr.13545. Epub 2023 Sep 13.
4
as the key gene related to the co-occurrence of sarcopenia and osteoporosis.
Front Genet. 2023 Jul 5;14:1163162. doi: 10.3389/fgene.2023.1163162. eCollection 2023.
5
Targeting the Hedgehog Pathway in Rhabdomyosarcoma.
Cancers (Basel). 2023 Jan 24;15(3):727. doi: 10.3390/cancers15030727.
6
Targeting cancer cachexia: Molecular mechanisms and clinical study.
MedComm (2020). 2022 Sep 10;3(4):e164. doi: 10.1002/mco2.164. eCollection 2022 Dec.
7
The Regulation of Growth in Developing, Homeostatic, and Regenerating Tetrapod Limbs: A Minireview.
Front Cell Dev Biol. 2022 Jan 3;9:768505. doi: 10.3389/fcell.2021.768505. eCollection 2021.
8
Neural control of growth and size in the axolotl limb regenerate.
Elife. 2021 Nov 15;10:e68584. doi: 10.7554/eLife.68584.
9
Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions.
Biochim Biophys Acta Rev Cancer. 2020 Apr;1873(2):188359. doi: 10.1016/j.bbcan.2020.188359. Epub 2020 Mar 25.

本文引用的文献

1
TIMP3: a physiological regulator of adult myogenesis.
J Cell Sci. 2010 Sep 1;123(Pt 17):2914-21. doi: 10.1242/jcs.057620. Epub 2010 Aug 3.
6
Evidence for a role of vertebrate Disp1 in long-range Shh signaling.
Development. 2010 Jan;137(1):133-40. doi: 10.1242/dev.043547.
7
Developing bones are differentially affected by compromised skeletal muscle formation.
Bone. 2010 May;46(5):1275-85. doi: 10.1016/j.bone.2009.11.026. Epub 2009 Nov 27.
8
Skeletal muscle stem cells in developmental versus regenerative myogenesis.
J Intern Med. 2009 Oct;266(4):372-89. doi: 10.1111/j.1365-2796.2009.02158.x.
9
Hedgehog: functions and mechanisms.
Genes Dev. 2008 Sep 15;22(18):2454-72. doi: 10.1101/gad.1693608.
10
Cellular heterogeneity during vertebrate skeletal muscle development.
Dev Biol. 2007 Aug 15;308(2):281-93. doi: 10.1016/j.ydbio.2007.06.006. Epub 2007 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验