Suppr超能文献

改进的隐蔽信息测试中呼吸线长度计算方法。

Improved method for calculating the respiratory line length in the Concealed Information Test.

机构信息

National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan.

出版信息

Int J Psychophysiol. 2011 Aug;81(2):65-71. doi: 10.1016/j.ijpsycho.2011.06.002. Epub 2011 Jun 23.

Abstract

The Concealed Information Test (CIT) assesses an examinee's knowledge about a crime based on response differences between crime-relevant and crime-irrelevant items. One effective measure in the CIT is the respiration line length, which is the average of the moving distances of the respiration curve in a specified time interval after the item onset. However, the moving distance differs between parts of a respiratory cycle. As a result, the calculated respiration line length is biased by how the parts of the respiratory cycles are included in the time interval. To resolve this problem, we propose a weighted average method, which calculates the respiration line length per cycle and weights it with the proportion that the cycle occupies in the time interval. Simulation results indicated that the weighted average method removes the bias of respiration line lengths compared to the original method. The results of experimental CIT data demonstrated that the weighted average method significantly increased the discrimination performance as compared with the original method. The weighted average method is a promising method for assessing respiration changes in response to question items more accurately, which improves the respiration-based discrimination performance of the CIT.

摘要

内隐联想测验(CIT)根据与犯罪相关和与犯罪不相关项目之间的反应差异来评估被试者对犯罪的了解程度。CIT 中的一种有效措施是呼吸线长度,它是在项目启动后指定时间间隔内呼吸曲线移动距离的平均值。然而,呼吸周期的各个部分的移动距离是不同的。因此,计算出的呼吸线长度会受到如何将呼吸周期的各个部分包含在时间间隔中的影响而产生偏差。为了解决这个问题,我们提出了一种加权平均值方法,该方法按每个周期计算呼吸线长度,并根据周期在时间间隔中所占的比例对其进行加权。模拟结果表明,与原始方法相比,加权平均值方法消除了呼吸线长度的偏差。对实验 CIT 数据的结果表明,与原始方法相比,加权平均值方法显著提高了判别性能。加权平均值方法是一种很有前途的方法,可更准确地评估对问题项目的呼吸变化,从而提高 CIT 基于呼吸的判别性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验