Ryhänen Samppa J, Säily V Matti J, Kinnunen Paavo K J
Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine, Biomedicum, University of Helsinki, PO Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland.
J Phys Condens Matter. 2006 Jul 19;18(28):S1139-50. doi: 10.1088/0953-8984/18/28/S03. Epub 2006 Jun 28.
Lipids bearing net electric charges in their hydrophilic headgroups are ubiquitous in biological membranes. Recently, the interest in cationic lipids has surged because of their potential as non-viral transfection vectors. In order to utilize cationic lipids in transfer of nucleic acids and to elucidate the role of charged lipids in cellular membranes in general, their complex interactions within the membrane and with the molecules in the surrounding media need to be thoroughly characterized. Yet, even interactions between monovalent counter-ions and charged lipids are inadequately understood. We studied the interactions of the cationic gemini surfactant (2R,3R)-2,3-dimethoxy-1,4- bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide (RR-1) with chloride, bromide, fluoride, and iodide as counter-ions by differential scanning calorimetry and Langmuir balance. Chloride interacts avidly with RR-1, efficiently condensing the monolayer, decreasing the collapse pressure, and elevating the main transition temperature. With bromide and iodide clearly different behaviour was observed, indicating specific interactions between RR-1 and these counter-ions. Moreover, with fluoride as a counter-ion and in pure water identical results were obtained, demonstrating inefficient electrostatic screening of the headgroups of RR-1 and suggesting fluoride being depleted on the surface of RR-1 membranes.