Suppr超能文献

生化参数和人体测量学可预测肥胖儿童的非酒精性脂肪肝。

Biochemical parameters and anthropometry predict NAFLD in obese children.

机构信息

Unit of Pediatric Diabetes, Clinical Nutrition and Obesity, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy.

出版信息

J Pediatr Gastroenterol Nutr. 2011 Dec;53(6):590-3. doi: 10.1097/MPG.0b013e31822960be.

Abstract

The aim of the present study was to build a predictive model of nonalcoholic fatty liver disease (NAFLD) in obese children. Fifty-six obese 10-year-old children underwent blood tests for biochemical measures and magnetic resonance imaging for NAFLD diagnosis. A model combining waist-to-height ratio, homeostasis model assessment of insulin resistance, adiponectin, and alanine aminotransferase was accurate in predicting NAFLD (AUROC = 0.94 [95% confidence interval 0.89-0.99], P < 10). When adiponectin was not included in the model, the discrimination accuracy was still good (AUROC = 0.88 [95% confidence interval 0.79-0.97], P < 10). In conclusion, a predictive equation combining routinely available variables may allow physicians to identify obese children at the highest risk of NAFLD.

摘要

本研究旨在建立肥胖儿童非酒精性脂肪性肝病(NAFLD)的预测模型。56 名肥胖 10 岁儿童接受了血液生化检测和磁共振成像 NAFLD 诊断。一种结合腰围身高比、胰岛素抵抗稳态模型评估、脂联素和丙氨酸氨基转移酶的模型,能够准确预测 NAFLD(AUROC=0.94[95%置信区间 0.89-0.99],P<0.001)。当模型中不包含脂联素时,其判别准确性仍然较好(AUROC=0.88[95%置信区间 0.79-0.97],P<0.001)。总之,一种结合常规可获得变量的预测方程,可能使医生能够识别出患 NAFLD 风险最高的肥胖儿童。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验