Suppr超能文献

调查四类非结瘤白三叶草(黄香草木樨)突变体及其对丛枝菌根真菌的响应。

Investigation of Four Classes of Non-nodulating White Sweetclover (Melilotus alba annua Desr.) Mutants and Their Responses to Arbuscular-Mycorrhizal Fungi.

机构信息

Department of Molecular, Cell and Developmental Biology.

出版信息

Integr Comp Biol. 2002 Apr;42(2):295-303. doi: 10.1093/icb/42.2.295.

Abstract

The nitrogen-fixing symbiosis between Rhizobiaceae and legumes is one of the best-studied interactions established between prokaryotes and eukaryotes. The plant develops root nodules in which the bacteria are housed, and atmospheric nitrogen is fixed into ammonia by the rhizobia and made available to the plant in exchange for carbon compounds. It has been hypothesized that this symbiosis evolved from the more ancient arbuscular mycorrhizal (AM) symbiosis, in which the fungus associates with roots and aids the plant in the absorption of mineral nutrients, particularly phosphate. Support comes from several fronts: 1) legume mutants where Nod(-) and Myc(-) co-segregate, and 2) the fact that various early nodulin (ENOD) genes are expressed in legume AM. Both strongly argue for the idea that the signal transduction pathways between the two symbioses are conserved. We have analyzed the responses of four classes of non-nodulating Melilotus alba (white sweetclover) mutants to Glomus intraradices (the mycorrhizal symbiont) to investigate how Nod(-) mutations affect the establishment of this symbiosis. We also re-examined the root hair responses of the non-nodulating mutants to Sinorhizobium meliloti (the nitrogen-fixing symbiont). Of the four classes, several sweetclover sym mutants are both Nod(-) and Myc(-). In an attempt to decipher the relationship between nodulation and mycorrhiza formation, we also performed co-inoculation experiments with mutant rhizobia and Glomus intraradices on Medicago sativa, a close relative of M. alba. Even though sulfated Nod factor was supplied by some of the bacterial mutants, the fungus did not complement symbiotically defective rhizobia for nodulation.

摘要

根瘤菌科与豆科植物之间的固氮共生关系是原核生物与真核生物之间建立的研究最为透彻的相互作用之一。植物在根瘤中发育,细菌就被容纳在这些根瘤中,根瘤菌将大气中的氮气固定为氨,并将其提供给植物,作为交换,植物为其提供碳化合物。有人假设这种共生关系是从更古老的丛枝菌根(AM)共生关系进化而来的,在这种共生关系中,真菌与根部结合,帮助植物吸收矿物质营养,特别是磷酸盐。这一假说得到了多方面的支持:1)根瘤突变体中 Nod(-) 和 Myc(-) 共分离,2)各种早期结瘤素(ENOD)基因在豆科植物 AM 中表达。这两点都强烈表明,这两种共生关系之间的信号转导途径是保守的。我们分析了四个非结瘤甜豌豆(白甜三叶草)突变体对 Glomus intraradices(菌根共生体)的反应,以研究 Nod(-) 突变如何影响这种共生关系的建立。我们还重新检查了非结瘤突变体的根毛对 Sinorhizobium meliloti(固氮共生体)的反应。在这四个类群中,几个甜三叶草共生突变体既 Nod(-) 又 Myc(-)。为了试图阐明结瘤和菌根形成之间的关系,我们还在 Medicago sativa(与 M. alba 密切相关的近缘植物)上进行了突变根瘤菌和 Glomus intraradices 的共接种实验。尽管一些细菌突变体提供了硫酸化的 Nod 因子,但真菌并没有在共生上弥补有缺陷的根瘤菌的结瘤作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验