Bernstein Group for Computational Neuroscience Jena, Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital—Friedrich-Schiller-University Jena, 07740 Jena, Germany.
IEEE Trans Biomed Eng. 2011 Oct;58(10):2844-51. doi: 10.1109/TBME.2011.2160636. Epub 2011 Jun 27.
Short-time Fourier transform (STFT), Gabor transform (GT), wavelet transform (WT), and the Wigner-Ville distribution (WVD) are just some examples of time-frequency analysis methods which are frequently applied in biomedical signal analysis. However, all of these methods have their individual drawbacks. The STFT, GT, and WT have a time-frequency resolution that is determined by algorithm parameters and the WVD is contaminated by cross terms. In 1993, Mallat and Zhang introduced the matching pursuit (MP) algorithm that decomposes a signal into a sum of atoms and uses a cross-term free pseudo-WVD to generate a data-adaptive power distribution in the time-frequency space. Thus, it solved some of the problems of the GT and WT but lacks phase information that is crucial e.g., for synchronization analysis. We introduce a new time-frequency analysis method that combines the MP with a pseudo-GT. Therefore, the signal is decomposed into a set of Gabor atoms. Afterward, each atom is analyzed with a Gabor analysis, where the time-domain gaussian window of the analysis matches that of the specific atom envelope. A superposition of the single time-frequency planes gives the final result. This is the first time that a complete analysis of the complex time-frequency plane can be performed in a fully data-adaptive and frequency-selective manner. We demonstrate the capabilities of our approach on a simulation and on real-life magnetoencephalogram data.
短时傅里叶变换(STFT)、Gabor 变换(GT)、小波变换(WT)和魏格纳-维尔分布(WVD)只是常用于生物医学信号分析的时频分析方法中的几种。然而,这些方法都有其各自的缺点。STFT、GT 和 WT 的时频分辨率由算法参数决定,而 WVD 则受到交叉项的污染。1993 年,Mallat 和 Zhang 引入了匹配追踪(MP)算法,该算法将信号分解为原子的和,并使用无交叉项的伪 WVD 在时频空间中生成数据自适应的功率分布。因此,它解决了 GT 和 WT 的一些问题,但缺乏相位信息,而相位信息对于同步分析等至关重要。我们引入了一种新的时频分析方法,将 MP 与伪 GT 相结合。因此,信号被分解为一组 Gabor 原子。然后,对每个原子进行 Gabor 分析,其中分析的时域高斯窗口与特定原子包络的时间域高斯窗口匹配。单个时频平面的叠加给出了最终结果。这是第一次以完全数据自适应和频率选择的方式对复杂的时频平面进行完整的分析。我们在模拟和真实的脑磁图数据上演示了我们方法的能力。