Suppr超能文献

由于乳腺肿瘤样本中存在污染的非肿瘤组织,基因组分类存在系统性偏差。

Systematic bias in genomic classification due to contaminating non-neoplastic tissue in breast tumor samples.

机构信息

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

BMC Med Genomics. 2011 Jun 30;4:54. doi: 10.1186/1755-8794-4-54.

Abstract

BACKGROUND

Genomic tests are available to predict breast cancer recurrence and to guide clinical decision making. These predictors provide recurrence risk scores along with a measure of uncertainty, usually a confidence interval. The confidence interval conveys random error and not systematic bias. Standard tumor sampling methods make this problematic, as it is common to have a substantial proportion (typically 30-50%) of a tumor sample comprised of histologically benign tissue. This "normal" tissue could represent a source of non-random error or systematic bias in genomic classification.

METHODS

To assess the performance characteristics of genomic classification to systematic error from normal contamination, we collected 55 tumor samples and paired tumor-adjacent normal tissue. Using genomic signatures from the tumor and paired normal, we evaluated how increasing normal contamination altered recurrence risk scores for various genomic predictors.

RESULTS

Simulations of normal tissue contamination caused misclassification of tumors in all predictors evaluated, but different breast cancer predictors showed different types of vulnerability to normal tissue bias. While two predictors had unpredictable direction of bias (either higher or lower risk of relapse resulted from normal contamination), one signature showed predictable direction of normal tissue effects. Due to this predictable direction of effect, this signature (the PAM50) was adjusted for normal tissue contamination and these corrections improved sensitivity and negative predictive value. For all three assays quality control standards and/or appropriate bias adjustment strategies can be used to improve assay reliability.

CONCLUSIONS

Normal tissue sampled concurrently with tumor is an important source of bias in breast genomic predictors. All genomic predictors show some sensitivity to normal tissue contamination and ideal strategies for mitigating this bias vary depending upon the particular genes and computational methods used in the predictor.

摘要

背景

基因组测试可用于预测乳腺癌复发并指导临床决策。这些预测因子提供了复发风险评分以及不确定性的度量,通常是置信区间。置信区间传达了随机误差,而不是系统偏差。标准的肿瘤取样方法使这变得复杂,因为通常有很大一部分(通常为 30-50%)肿瘤样本由组织学良性组织组成。这种“正常”组织可能是基因组分类中随机误差或系统偏差的来源。

方法

为了评估基因组分类对正常污染系统误差的性能特征,我们收集了 55 个肿瘤样本和肿瘤相邻的正常组织配对。使用肿瘤和配对正常组织的基因组特征,我们评估了随着正常污染的增加,各种基因组预测因子如何改变复发风险评分。

结果

正常组织污染的模拟导致所有评估的预测因子中的肿瘤分类错误,但不同的乳腺癌预测因子对正常组织偏差的脆弱性表现出不同的类型。虽然两个预测因子具有不可预测的偏差方向(正常污染导致复发风险增加或降低),但一个特征显示出正常组织效应的可预测方向。由于这种可预测的效应方向,该特征(PAM50)针对正常组织污染进行了调整,这些校正提高了敏感性和阴性预测值。对于所有三种检测,都可以使用质量控制标准和/或适当的偏差调整策略来提高检测的可靠性。

结论

与肿瘤同时取样的正常组织是乳腺癌基因组预测因子中重要的偏差来源。所有基因组预测因子都对正常组织污染具有一定的敏感性,理想的缓解这种偏差的策略取决于预测因子中使用的特定基因和计算方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c30/3151208/13589d072621/1755-8794-4-54-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验