Suppr超能文献

卵巢正常、良性和恶性组织的光声光谱学:一项初步研究。

Photoacoustic spectroscopy of ovarian normal, benign, and malignant tissues: a pilot study.

机构信息

Manipal University, Manipal Life Sciences Centre, Biophysics Unit, Manipal, India.

出版信息

J Biomed Opt. 2011 Jun;16(6):067001. doi: 10.1117/1.3583573.

Abstract

Photoacoustic spectra of normal, benign, and malignant ovarian tissues are recorded using 325-nm pulsed laser excitation in vitro. A total of 102 (34 normal, 38 benign, and 30 malignant) spectra are obtained from 22 samples belonging to normal, benign, and malignant subjects. Applying multi-algorithm approach, comprised of methods such as, principal component analysis (PCA) based k-nearest neighbor (k-NN) analysis, artificial neural network (ANN) analysis, and support vector machine (SVM) analysis, classification of the data has been carried out. For PCA, first the calibration set is formed by pooling 45 spectra, 15 belonging to each of pathologically certified normal, benign, and malignant samples. PCA is then performed on the data matrix, comprised of the six spectral features extracted from each of 45 calibration samples, and three principal components (PCs) containing maximum diagnostic information are selected. The scores of the selected PCs are used to train the k-NN, ANN, and SVM classifiers. The ANN used is a classical multilayer feed forward network with back propagation algorithm for its training. For k-NN, the Euclidean distance based algorithm is used and for SVM, one-versus-rest multiclass kernel-radial basis function is used. The performance evaluation of the classification results are obtained by calculating statistical parameters like specificity and sensitivity. ANN and k-NN techniques showed identical performance with specificity and sensitivity values of 100 and 86.76%, whereas SVM had these values at 100 and 80.18%, respectively. In order to determine the relative diagnostic performance of the techniques, receiver operating characteristics analysis is also performed.

摘要

采用 325nm 脉冲激光激发,体外记录正常、良性和恶性卵巢组织的光声光谱。从属于正常、良性和恶性受试者的 22 个样本中获得了总共 102 个(34 个正常、38 个良性和 30 个恶性)光谱。应用多算法方法,包括基于主成分分析(PCA)的 k-最近邻(k-NN)分析、人工神经网络(ANN)分析和支持向量机(SVM)分析等方法,对数据进行分类。对于 PCA,首先通过汇集 45 个光谱(每个病理认证的正常、良性和恶性样本各 15 个)来形成校准集。然后在数据矩阵上执行 PCA,该数据矩阵由从 45 个校准样本中的每个样本中提取的六个光谱特征组成,并选择包含最大诊断信息的三个主成分(PC)。选择的 PC 的分数用于训练 k-NN、ANN 和 SVM 分类器。所使用的 ANN 是具有反向传播算法的经典多层前馈网络,用于其训练。对于 k-NN,使用基于欧几里得距离的算法,而对于 SVM,使用单对多类核径向基函数。通过计算特异性和敏感性等统计参数来获得分类结果的性能评估。ANN 和 k-NN 技术表现出相同的性能,特异性和敏感性值分别为 100%和 86.76%,而 SVM 的这些值分别为 100%和 80.18%。为了确定技术的相对诊断性能,还进行了接收器工作特性分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验