National Yang-Ming University, Institute of Biophotonics, Taipei 112, Taiwan.
J Biomed Opt. 2011 Jun;16(6):068001. doi: 10.1117/1.3590204.
Noninvasive detection of cell death has the potential for definitive diagnosis and monitoring treatment outcomes in real time. Reduced nicotinamide adenine dinucleotide (NADH) fluorescence intensity has long been used as a noninvasive optical probe of metabolic states. NADH fluorescence lifetime has recently been studied for its potential as an alternative optical probe of cellular metabolic states and cell death. In this study, we investigated the potential using NADH fluorescence intensity and/or lifetime to detect poly(adenosine-5'-diphosphate-ribose) polymerase-1 (PARP-1)-mediated cell death in HeLa cells. We also examined if NADH signals respond to treatment by pyruvate. The mechanism of PARP-1-mediated cell death has been well studied that extensive PARP-1 activation leads to cytosolic nicotinamide adenine dinucleotide depletion resulting in glycolytic inhibition, mitochondrial failure, and death. Pyruvate could restore electron transport chain to prevent energy failure and death. Our results show that NADH fluorescence lifetime, not intensity, responded to PARP-1-mediated cell death and the rescue effect of pyruvate. This lifetime change of NADH fluorescence happened before the collapse of mitochondrial membrane potential and mitochondrial uncoupling. Together with our previous findings in staurosporine-induced cell death, we suggest that NADH fluorescence lifetime increase during cell death is mainly due to increased protein-protein interactions but not the intracellular NADH content.
细胞死亡的无创检测具有实时明确诊断和监测治疗效果的潜力。还原型烟酰胺腺嘌呤二核苷酸(NADH)荧光强度一直被用作代谢状态的无创光学探针。NADH 荧光寿命最近也因其作为细胞代谢状态和细胞死亡的替代光学探针的潜力而被研究。在这项研究中,我们研究了使用 NADH 荧光强度和/或寿命来检测 HeLa 细胞中聚(腺苷-5′-二磷酸核糖)聚合酶-1(PARP-1)介导的细胞死亡的潜力。我们还检查了 NADH 信号是否对丙酮酸的治疗有反应。PARP-1 介导的细胞死亡的机制已经得到了很好的研究,广泛的 PARP-1 激活导致细胞溶质烟酰胺腺嘌呤二核苷酸耗竭,导致糖酵解抑制、线粒体功能障碍和死亡。丙酮酸可以恢复电子传递链以防止能量衰竭和死亡。我们的结果表明,NADH 荧光寿命而不是强度对 PARP-1 介导的细胞死亡和丙酮酸的挽救作用有反应。这种 NADH 荧光寿命的变化发生在线粒体膜电位崩溃和线粒体解偶联之前。结合我们之前在星形孢菌素诱导的细胞死亡中的发现,我们认为细胞死亡过程中 NADH 荧光寿命的增加主要是由于蛋白质-蛋白质相互作用的增加,而不是细胞内 NADH 含量的增加。