Zachary Chase E, Jiao Yang, Torquato Salvatore
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051309. doi: 10.1103/PhysRevE.83.051309. Epub 2011 May 31.
We extend the results from the first part of this series of two papers by examining hyperuniformity in heterogeneous media composed of impenetrable anisotropic inclusions. Specifically, we consider maximally random jammed (MRJ) packings of hard ellipses and superdisks and show that these systems both possess vanishing infinite-wavelength local-volume-fraction fluctuations and quasi-long-range pair correlations scaling as r(-(d+1)) in d Euclidean dimensions. Our results suggest a strong generalization of a conjecture by Torquato and Stillinger [Phys. Rev. E 68, 041113 (2003)], namely, that all strictly jammed saturated packings of hard particles, including those with size and shape distributions, are hyperuniform with signature quasi-long-range correlations. We show that our arguments concerning the constrained distribution of the void space in MRJ packings directly extend to hard-ellipse and superdisk packings, thereby providing a direct structural explanation for the appearance of hyperuniformity and quasi-long-range correlations in these systems. Additionally, we examine general heterogeneous media with anisotropic inclusions and show unexpectedly that one can decorate a periodic point pattern to obtain a hard-particle system that is not hyperuniform with respect to local-volume-fraction fluctuations. This apparent discrepancy can also be rationalized by appealing to the irregular distribution of the void space arising from the anisotropic shapes of the particles. Our work suggests the intriguing possibility that the MRJ states of hard particles share certain universal features independent of the local properties of the packings, including the packing fraction and average contact number per particle.
通过研究由不可穿透的各向异性内含物构成的非均匀介质中的超均匀性,我们扩展了这两篇系列论文第一部分的结果。具体而言,我们考虑了硬椭圆和超圆盘的最大随机堵塞(MRJ)堆积,并表明这些系统在d维欧几里得空间中都具有消失的无限波长局部体积分数涨落以及准长程对关联,其标度为r^(-(d + 1))。我们的结果有力地推广了Torquato和Stillinger的一个猜想[《物理评论E》68, 041113 (2003)],即所有硬粒子的严格堵塞饱和堆积,包括那些具有尺寸和形状分布的堆积,都具有标志性的准长程关联的超均匀性。我们表明,我们关于MRJ堆积中空隙空间受限分布的论证直接扩展到硬椭圆和超圆盘堆积,从而为这些系统中超均匀性和准长程关联的出现提供了直接的结构解释。此外,我们研究了具有各向异性内含物的一般非均匀介质,并意外地发现,可以对周期性点图案进行修饰以获得一个关于局部体积分数涨落不是超均匀的硬粒子系统。这种明显的差异也可以通过诉诸由粒子各向异性形状引起的空隙空间的不规则分布来合理化。我们的工作表明了一种有趣的可能性,即硬粒子的MRJ态具有某些独立于堆积局部性质(包括堆积分数和每个粒子的平均接触数)的普遍特征。