Steveson T C, Jennett C L, Dores R M
University of Denver, Department of Biological Sciences, CO 80208.
Peptides. 1990 Jul-Aug;11(4):797-803. doi: 10.1016/0196-9781(90)90197-d.
Steady-state analysis of the acid extracts of the intermediate pituitary of the toad, Bufo marinus, revealed the presence of multiple forms of beta-endorphin and alpha-MSH. Approximately 98% of the immunoreactive beta-endorphin was N-acetylated. The major form of N-acetylated beta-endorphin, which represented 81.5% of the total beta-endorphin recovered from this tissue, had an apparent molecular weight of 1.2 kDa and a net charge of +1 at pH 2.75. Approximately 98% of the immunoreactive alpha-MSH present in the Bufo intermediate pituitary had reverse phase HPLC properties similar to the nonacetylated form of alpha-MSH, ACTH(1-13)amide. These observations are in agreement with studies on the intermediate pituitary of the frog, Xenopus laevis, which have shown that the N-acetylation of alpha-MSH in this species is a cosecretory processing event, whereas the N-acetylation of beta-endorphin is a posttranslational processing event (2, 5, 15). These observations indicate that the N-acetylation of beta-endorphin and alpha-MSH occurs at distinct subcellular sites in intermediate pituitary cells of anuran amphibians. The Bufo intermediate pituitary will serve as a good model system for studying these novel N-acetyltransferase reactions.