Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Cell Biochem Biophys. 2011 Dec;61(3):493-505. doi: 10.1007/s12013-011-9232-2.
We identified significantly higher expression of the genes glycogen debranching enzyme 6 (AGL), enolase 1 (ENOSF1), ectonucleotide pyrophosphatase 2 (ENPP2_1), glutathione S-transferase 3 (GSTM3_3) and mannosidase (MAN2B2) from human left cerebrums versus chimpanzees. Yet the distinct low- and high-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism networks between chimpanzee and human left cerebrum remain to be elucidated. Here, we constructed low- and high-expression activated and inhibited upstream and downstream AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network between chimpanzee and human left cerebrum in GEO data set by gene regulatory network inference method based on linear programming and decomposition procedure, under covering AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 pathway and matching metabolism enrichment analysis by CapitalBio MAS 3.0 integration of public databases, including Gene Ontology, KEGG, BioCarta, GenMapp, Intact, UniGene, OMIM, etc. Our results show that the AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network has more activated and less inhibited molecules in chimpanzee, but less activated and more inhibited in the human left cerebrum. We inferred stronger carbohydrate, glutathione and proteoglycan metabolism, ATPase activity, but weaker base excision repair, arachidonic acid and drug metabolism as a result of inducing cell growth in low-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network of chimpanzee left cerebrum; whereas stronger lipid metabolism, amino acid catabolism, DNA repair but weaker inflammatory response, cell proliferation, glutathione and carbohydrate metabolism as a result of inducing cell differentiation in high-expression AGL, ENOSF1, ENPP2_1, GSTM3_3 and MAN2B2 metabolism network of human left cerebrum. Our inferences are consistent with recent reports and computational activation and inhibition gene number patterns, respectively.
我们从人类左大脑中鉴定出糖原分支酶 6(AGL)、烯醇酶 1(ENOSF1)、核苷酸磷酸二酯酶 2(ENPP2_1)、谷胱甘肽 S-转移酶 3(GSTM3_3)和甘露糖苷酶(MAN2B2)的基因表达明显高于黑猩猩。然而,黑猩猩和人类左大脑中明显的低表达和高表达 AGL、ENOSF1、ENPP2_1、GSTM3_3 和 MAN2B2 代谢网络仍有待阐明。在这里,我们基于线性规划和分解过程的基因调控网络推断方法,在 GEO 数据集构建了低表达和高表达的激活和抑制的 AGL、ENOSF1、ENPP2_1、GSTM3_3 和 MAN2B2 代谢网络,涵盖了 AGL、ENOSF1、ENPP2_1、GSTM3_3 和 MAN2B2 途径,并通过 CapitalBio MAS 3.0 整合公共数据库进行匹配的代谢富集分析,包括基因本体论、KEGG、BioCarta、GenMapp、Intact、UniGene、OMIM 等。我们的结果表明,AGL、ENOSF1、ENPP2_1、GSTM3_3 和 MAN2B2 代谢网络在黑猩猩中具有更多的激活分子和更少的抑制分子,但在人类左大脑中则相反。我们推断出更强的碳水化合物、谷胱甘肽和糖胺聚糖代谢、ATP 酶活性,但较弱的碱基切除修复、花生四烯酸和药物代谢,是由于在低表达的 AGL、ENOSF1、ENPP2_1、GSTM3_3 和 MAN2B2 代谢网络中诱导细胞生长的结果;而更强的脂质代谢、氨基酸分解代谢、DNA 修复,但较弱的炎症反应、细胞增殖、谷胱甘肽和碳水化合物代谢,是由于在高表达的 AGL、ENOSF1、ENPP2_1、GSTM3_3 和 MAN2B2 代谢网络中诱导细胞分化的结果。我们的推断与最近的报告和计算的激活和抑制基因数量模式一致。