Suppr超能文献

抑制II型DNA拓扑异构酶的抗肿瘤和抗菌药物作用机制相同的证据。

Evidence for a common mechanism of action for antitumor and antibacterial agents that inhibit type II DNA topoisomerases.

作者信息

Huff A C, Kreuzer K N

机构信息

Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710.

出版信息

J Biol Chem. 1990 Nov 25;265(33):20496-505.

PMID:2173709
Abstract

Numerous antitumor and antibacterial agents inhibit type II DNA topoisomerases, yielding, in each case, a complex of enzyme covalently bound to cleaved DNA. We are investigating the mechanism of inhibitor action by using the type II DNA topoisomerase of bacteriophage T4 as a model. The T4 topoisomerase is the target of antitumor agent 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA) in T4-infected Escherichia coli. Two m-AMSA-resistant phage strains were previously isolated, one with a point mutation in topoisomerase subunit gene 39 and the other with a point mutation in topoisomerase subunit gene 52. We report here that the wild-type T4 topoisomerase is inhibited by six additional antitumor agents that also inhibit the mammalian type II topoisomerase: ellipticine, 9-OH-ellipticine, 2-me-9-OH-ellipticinium acetate, mitoxantrone diacetate, teniposide, and etoposide. Further, one or both of the m-AMSA-resistance mutations alters the enzyme sensitivity to each of these agents, conferring either cross-resistance or enhanced sensitivity. Finally, the gene 39 mutation confers on T4 topoisomerase a DNA gyrase-like sensitivity to the gyrase inhibitor oxolinic acid, thus establishing a direct link between the mechanism of action of the anti-bacterial quinolones and that of the antitumor agents. These results strongly suggest that diverse inhibitors of type II topoisomerases share a common binding site and a common mechanism of action, both of which are apparently conserved in the evolution of the type II DNA topoisomerases. Alterations in DNA cleavage site specificity caused by either the inhibitors or the m-AMSA-resistance mutations favor the proposal that the inhibitor binding site is composed of both protein and DNA.

摘要

许多抗肿瘤和抗菌药物会抑制II型DNA拓扑异构酶,在每种情况下都会产生一种酶与切割后的DNA共价结合的复合物。我们正在以噬菌体T4的II型DNA拓扑异构酶为模型研究抑制剂的作用机制。T4拓扑异构酶是抗肿瘤药物4'-(9-吖啶基氨基)-甲磺酰基间茴香胺(m-AMSA)在T4感染的大肠杆菌中的作用靶点。之前分离出了两种对m-AMSA耐药的噬菌体菌株,一种在拓扑异构酶亚基基因39中有一个点突变,另一种在拓扑异构酶亚基基因52中有一个点突变。我们在此报告,野生型T4拓扑异构酶还会受到另外六种也能抑制哺乳动物II型拓扑异构酶的抗肿瘤药物的抑制:玫瑰树碱、9-羟基玫瑰树碱、2-甲基-9-羟基玫瑰树碱乙酸盐、米托蒽醌二乙酸盐、替尼泊苷和依托泊苷。此外,一个或两个m-AMSA耐药突变会改变酶对这些药物中每种药物的敏感性,导致交叉耐药或敏感性增强。最后,基因39突变赋予T4拓扑异构酶对回旋酶抑制剂恶喹酸的类似DNA回旋酶的敏感性,从而在抗菌喹诺酮类药物和抗肿瘤药物的作用机制之间建立了直接联系。这些结果强烈表明,II型拓扑异构酶的多种抑制剂共享一个共同的结合位点和一个共同的作用机制,这两者在II型DNA拓扑异构酶的进化过程中显然是保守的。由抑制剂或m-AMSA耐药突变引起的DNA切割位点特异性的改变支持了抑制剂结合位点由蛋白质和DNA组成的观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验