Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland.
J Magn Reson. 2011 Aug;211(2):207-16. doi: 10.1016/j.jmr.2011.05.016. Epub 2011 Jun 7.
Molecular dynamics of a polycrystalline sample of (CH(3)NH(3))(5)Bi(2)Br(11) (MAPBB) is studied on the basis of the proton T(1) (55.2 MHz) relaxation time and the proton second moment of NMR line. The T(1) (55.2 MHz) was measured for temperatures from 20K to 330 K, while the second moment M(2) for those from 40K to 330 K. The proton spin pairs of the methyl and ammonium groups perform a complex stochastic motion being a resultant of four components characterised by the correlation times τ(3)(T), τ(3)(H), τ(2), and τ(iso), referring to the tunnelling and over the barrier jumps in a triple potential, jumps between two equilibrium sites and isotropic rotation. The theoretical expressions for the spectral densities in the cases of the complex motion considered were derived. For τ(3)(H), τ(2), and τ(iso) the Arrhenius temperature dependence was assumed, while for τ(3)(T)-the Schrödinger one. The correlation times τ(3)(H) for CH(3) and NH(3) groups differ, which indicates the uncorrelated motion of these groups. The stochastic tunnelling jumps are not present above the temperature T(tun) at which the thermal energy is higher than the activation energy of jumps over the barrier attributed to the hindered rotation of the CH(3) and NH(3) groups. The T(tun) temperature is 54.6 K for NH(3) group and 46.5 K for CH(3) group in MAPBB crystal. The tunnelling jumps of the methyl and ammonium protons are responsible for the flattening of T(1) temperature dependence at low temperatures. The isotropic tumbling is detectable only from the M(2) temperature dependence. The isotropic tumbling reduces the second moment to 4 G(2) which is the value of the intermolecular part of the second moment. The motion characterised by the correlation time τ(2) is well detectable from both T(1) and M(2) temperature dependences. This motion causes the appearance of T(1) minimum at 130 K and reduction of the second moment to the 7.7 G(2) value. The small tunnelling splitting ω(T) of the same value for the methyl and ammonium groups was estimated as 226 MHz from the Haupt equation or 80 MHz from the corrected by us Haupt equation. These frequencies correspond to 0.93 μeV and 0.34 μeV tunnel splitting energy.
基于质子 T1(55.2MHz)弛豫时间和质子核磁共振线的第二矩,研究了(CH(3)NH(3))(5)Bi(2)Br(11)(MAPBB)多晶样品的分子动力学。T1(55.2MHz)的测量温度范围为 20K 至 330K,而第二矩 M2 的测量温度范围为 40K 至 330K。甲基和铵基团的质子自旋对通过四个特征相关时间 τ(3)(T)、τ(3)(H)、τ(2)和 τ(iso)表现出复杂的随机运动,这些相关时间分别指三重势垒中的隧穿和越过势垒跳跃、在两个平衡位置之间的跳跃和各向同性旋转。在考虑的复杂运动的情况下,推导出了谱密度的理论表达式。对于 τ(3)(H)、τ(2)和 τ(iso),假设了阿仑尼乌斯温度依赖性,而对于 τ(3)(T) - 薛定谔依赖性。CH3 和 NH3 基团的相关时间 τ(3)(H)不同,这表明这些基团的运动是不相关的。在温度 T(tun)以上不存在随机隧穿跳跃,其中热能量高于归因于 CH3 和 NH3 基团受阻旋转的势垒越过跳跃的活化能。T(tun)温度对于 MAPBB 晶体中的 NH3 基团为 54.6K,对于 CH3 基团为 46.5K。甲基和铵质子的隧穿跳跃负责低温下 T1 温度依赖性的变平。各向同性翻转仅从 M2 温度依赖性中可检测到。各向同性翻转将第二矩减小到 4G2,这是第二矩的分子间部分的值。由相关时间 τ(2)表征的运动可以从 T1 和 M2 温度依赖性两者中很好地检测到。这种运动导致在 130K 出现 T1 最小值,并将第二矩降低到 7.7G2 值。根据 Haupt 方程或我们校正后的 Haupt 方程,估计甲基和铵基团相同值的小隧穿分裂 ω(T)分别为 226MHz 或 80MHz。这些频率对应于 0.93μeV 和 0.34μeV 的隧穿分裂能。