Université de Lyon, Université Lyon I - CNRS-UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France.
J Hosp Infect. 2011 Sep;79(1):38-43. doi: 10.1016/j.jhin.2011.05.006. Epub 2011 Jul 13.
The aim of this study was to evaluate seven different strategies for the automated detection of nosocomial infections (NIs) in an intensive care unit (ICU) by using different hospital information systems: microbiology database, antibiotic prescriptions, medico-administrative database, and textual hospital discharge summaries. The study involved 1,499 patients admitted to an ICU of the University Hospital of Lyon (France) between 2000 and 2006. The data were extracted from the microbiology laboratory information system, the clinical information system on the ward and the medico-administrative database. Different algorithms and strategies were developed, using these data sources individually or in combination. The performances of each strategy were assessed by comparing the results with the ward data collected as a national standardised surveillance protocol, adapted from the National Nosocomial Infections Surveillance system as the gold standard. From 1,499 patients, 282 NIs were reported. The strategy with the best sensitivity for detecting these infections using an automated method was the combination of antibiotic prescription or microbiology, with a sensitivity of 99.3% [95% confidence interval (CI): 98.2-100] and a specificity of 56.8% (95% CI: 54.0-59.6). Automated methods of NI detection represent an alternative to traditional monitoring methods. Further study involving more ICUs should be performed before national recommendations can be established.
本研究旨在评估七种不同的策略,通过使用不同的医院信息系统,自动检测重症监护病房(ICU)的医院获得性感染(NIs):微生物数据库、抗生素处方、医疗管理数据库和文本式医院出院总结。该研究涉及 2000 年至 2006 年间入住法国里昂大学医院 ICU 的 1499 名患者。数据从微生物实验室信息系统、病房临床信息系统和医疗管理数据库中提取。使用这些数据源单独或组合开发了不同的算法和策略。通过将结果与作为金标准的国家标准化监测方案收集的病房数据进行比较,评估每种策略的性能。从 1499 名患者中报告了 282 例 NIs。使用自动化方法检测这些感染的最佳敏感性策略是抗生素处方或微生物学的组合,其敏感性为 99.3%(95%CI:98.2-100),特异性为 56.8%(95%CI:54.0-59.6)。NI 检测的自动化方法代表了传统监测方法的替代方法。在制定国家建议之前,应在更多的 ICU 中进行进一步的研究。