School of Chemistry, University of Wollongong, NSW 2522, Australia.
Phys Chem Chem Phys. 2011 Sep 28;13(36):16314-23. doi: 10.1039/c1cp20784a. Epub 2011 Jul 11.
α-Carboxylate radical anions are potential reactive intermediates in the free radical oxidation of biological molecules (e.g., fatty acids, peptides and proteins). We have synthesised well-defined α-carboxylate radical anions in the gas phase by UV laser photolysis of halogenated precursors in an ion-trap mass spectrometer. Reactions of isolated acetate (˙CH(2)CO(2)(-)) and 1-carboxylatobutyl (CH(3)CH(2)CH(2)˙CHCO(2)(-)) radical anions with dioxygen yield carbonate (CO(3)˙(-)) radical anions and this chemistry is shown to be a hallmark of oxidation in simple and alkyl-substituted cross-conjugated species. Previous solution phase studies have shown that C(α)-radicals in peptides, formed from free radical damage, combine with dioxygen to form peroxyl radicals that subsequently decompose into imine and keto acid products. Here, we demonstrate that a novel alternative pathway exists for two α-carboxylate C(α)-radical anions: the acetylglycinate radical anion (CH(3)C(O)NH˙CHCO(2)(-)) and the model peptide radical anion, YGGFG˙(-). Reaction of these radical anions with dioxygen results in concerted loss of carbon dioxide and hydroxyl radical. The reaction of the acetylglycinate radical anion with dioxygen reveals a two-stage process involving a slow, followed by a fast kinetic regime. Computational modelling suggests the reversible formation of the C(α) peroxyl radical facilitates proton transfer from the amide to the carboxylate group, a process reminiscent of, but distinctive from, classical proton-transfer catalysis. Interestingly, inclusion of this isomerization step in the RRKM/ME modelling of a G3SX level potential energy surface enables recapitulation of the experimentally observed two-stage kinetics.
α-羧酸根自由基阴离子是生物分子自由基氧化过程中的潜在活性中间体(例如脂肪酸、肽和蛋白质)。我们在离子阱质谱仪中通过卤代前体的紫外激光光解,在气相中合成了定义明确的α-羧酸根自由基阴离子。分离出的乙酸盐(˙CH(2)CO(2)(-))和 1-羧基丁基(CH(3)CH(2)CH(2)˙CHCO(2)(-))自由基阴离子与氧气反应生成碳酸盐(CO(3)˙(-))自由基阴离子,这种化学性质表明在简单和烷基取代的交叉共轭物种中氧化是其特征。以前的溶液相研究表明,从自由基损伤中形成的肽中的 C(α)-自由基与氧气结合形成过氧自由基,随后过氧自由基分解成亚胺和酮酸产物。在这里,我们证明了两种 α-羧酸 C(α)-自由基阴离子存在一种新的替代途径:乙酰甘氨酸根自由基阴离子(CH(3)C(O)NH˙CHCO(2)(-))和模型肽自由基阴离子,YGGFG˙(-)。这些自由基阴离子与氧气反应导致协同失去二氧化碳和羟基自由基。乙酰甘氨酸根自由基阴离子与氧气的反应揭示了一个两阶段过程,涉及一个缓慢的,随后是一个快速的动力学区域。计算模型表明,C(α)过氧自由基的可逆形成有助于质子从酰胺转移到羧酸盐基团,这一过程类似于但有别于经典的质子转移催化。有趣的是,在 G3SX 水平势能面的 RRKM/ME 建模中包含这种异构化步骤,能够再现实验观察到的两阶段动力学。