Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.
J Chem Phys. 2011 Jul 7;135(1):014901. doi: 10.1063/1.3605600.
The spontaneous thermodynamically driven densification, the so-called physical aging, of glassy poly(mehtyl methacrylate) (PMMA) and its nanocomposites with silica has been described by means of the free volume holes diffusion model. This mechanism is able to account for the partial decoupling between physical aging and segmental dynamics of PMMA in nancomposites. The former has been found to be accelerated in PMMA/silica nanocomposites in comparison to "bulk" PMMA, whereas no difference between the segmental dynamics of bulk PMMA and that of the same polymer in nanocomposites has been observed. Thus, the rate of physical aging also depends on the amount of interface polymer/nanoparticles, where free volume holes disappear after diffusing through the polymer matrix. The free volume holes diffusion model is able to nicely capture the phenomenology of the physical aging process with a structure dependent diffusion coefficient.
通过自由体积空穴扩散模型,描述了玻璃态聚甲基丙烯酸甲酯(PMMA)及其与二氧化硅的纳米复合材料的自发热力学致密化,即所谓的物理老化。该机制能够解释纳米复合材料中 PMMA 的物理老化和链段动力学之间的部分解耦。与“本体”PMMA 相比,发现 PMMA/二氧化硅纳米复合材料中的物理老化过程得到了加速,而本体 PMMA 的链段动力学与纳米复合材料中相同聚合物的链段动力学没有差异。因此,物理老化的速率也取决于界面聚合物/纳米颗粒的数量,其中自由体积空穴在通过聚合物基质扩散后消失。自由体积空穴扩散模型能够以依赖于结构的扩散系数很好地捕捉物理老化过程的现象。