School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan.
Chemphyschem. 2011 Aug 22;12(12):2266-73. doi: 10.1002/cphc.201100377. Epub 2011 Jul 12.
A non-covalent double-decker binding strategy is employed to construct functional supramolecular single-wall carbon nanotubes (SWCNT)-tetrapyrrole hybrids capable of undergoing photoinduced electron transfer and performing direct conversion of light into electricity. To accomplish this, two semiconducting SWCNTs of different diameters (6,5 and 7,6) were modified via π-π stacking of pyrene functionalized with an alkyl ammonium cation (PyrNH(3)(+)). Such modified nanotubes were subsequently assembled via dipole-cation binding of zinc porphyrin with one (1) or four benzo-18-crown-6 cavities (2) or phthalocyanine with four benzo-18-crown-6 cavities at the ring periphery (3), employed as visible-light photosensitizers. Upon charactering the conjugates using TEM and optical techniques, electron transfer via photoexcited zinc porphyrin and phthalocyanine was investigated using time-resolved emission and transient absorption techniques. Higher charge-separation efficiency is established for SWCNT(7,6) with a narrow band gap than the thin SWCNT(6,5) with a wide band gap. Photoelectrochemical studies using FTO/SnO(2) electrodes modified with these donor-acceptor conjugates unanimously demonstrated the ability of these conjugates to convert light energy into electricity. The photocurrent generation followed the trend observed for charge separation, that is, incident-photon-to-current efficiency (IPCE) of a maximum of 12 % is achieved for photocells with FTO/SnO(2)/SWCNT(7,6)/PyrNH(3)(+):1.
采用非共价双层结合策略构建了功能化超分子单壁碳纳米管(SWCNT)-四吡咯杂化体,该杂化体能够进行光诱导电子转移并直接将光转化为电。为了实现这一目标,两种不同直径(6,5 和 7,6)的半导体 SWCNT 通过芘功能化的烷基铵阳离子(PyrNH(3)(+))的π-π堆积进行修饰。随后,通过锌卟啉与一个(1)或四个苯并-18-冠-6 空腔(2)或酞菁与四个苯并-18-冠-6 空腔在环外围的偶极阳离子结合,将这些修饰后的纳米管组装在一起,用作可见光光敏剂。使用 TEM 和光学技术对这些配合物进行表征后,使用时间分辨发射和瞬态吸收技术研究了通过光激发锌卟啉和酞菁的电子转移。与具有宽能带隙的薄 SWCNT(6,5)相比,具有窄能带隙的 SWCNT(7,6)建立了更高的电荷分离效率。使用这些供体-受体配合物修饰的 FTO/SnO(2)电极进行光电化学研究一致表明,这些配合物能够将光能转化为电能。光电流的产生遵循观察到的电荷分离趋势,即对于具有 FTO/SnO(2)/SWCNT(7,6)/PyrNH(3)(+):1 的光电池,最大达到 12%的光电流效率(IPCE)。