Suppr超能文献

预测注册护士麻醉师学生的学业进展。

Predicting academic progression for student registered nurse anesthetists.

作者信息

Burns Sharon M

机构信息

Nurse Anesthesia Program, Midwestern University College of Health Sciences, Glendale, Arizona, USA.

出版信息

AANA J. 2011 Jun;79(3):193-201.

Abstract

In order to foster academic progression and improve retention in nurse anesthesia programs, admission selection criteria require attention. With the escalating cost of graduate education coupled with the current economic crisis, efforts by educational leaders to minimize attrition remain pivotal. Selecting potential candidates who are most likely to succeed, aligned with data-driven evidence, offers the greatest potential for academic success for student registered nurse anesthetists. The purpose of this quantitative correlational study was to determine if a relationship existed between admission criteria (grade point average [GPA], science grade point average [SGPA], Graduate Record Examination scores, and critical care experience) and academic progression (current academic status and GPA). Key findings revealed that statistically significant relationships exist between the admission selection criteria and academic progression. Findings also indicated that a combination of the independent variables, specifically the GPA and SGPA, predict academic progression. Further research that includes examination of cognitive and noncognitive admission criteria may offer greater evidence predicting academic performance by student registered nurse anesthetists.

摘要

为了促进学术进步并提高护士麻醉专业项目的留存率,招生选拔标准需要引起关注。随着研究生教育成本的不断攀升以及当前的经济危机,教育领导者努力将学生流失率降至最低仍然至关重要。根据数据驱动的证据,挑选最有可能成功的潜在候选人,为注册护士麻醉专业学生的学术成功提供了最大的潜力。这项定量相关性研究的目的是确定招生标准(平均绩点[GPA]、理科平均绩点[SGPA]、研究生入学考试成绩和重症护理经验)与学术进展(当前学业状态和GPA)之间是否存在关联。主要研究结果表明,招生选拔标准与学术进展之间存在统计学上的显著关联。研究结果还表明,自变量的组合,特别是GPA和SGPA,可以预测学术进展。进一步的研究,包括对认知和非认知招生标准的考察,可能会提供更多证据来预测注册护士麻醉专业学生的学业表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验