Suppr超能文献

细胞选择性阿尔茨海默病β淀粉样肽表面膜结合的荧光分析:膜成分的影响

Fluorescent analysis of the cell-selective Alzheimer's disease aβ Peptide surface membrane binding: influence of membrane components.

作者信息

Simakova Olga, Arispe Nelson J

机构信息

Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD 20814, USA.

出版信息

Int J Alzheimers Dis. 2011;2011:917629. doi: 10.4061/2011/917629. Epub 2011 Jun 8.

Abstract

We performed a fluorescent analysis of the binding of Aβ to the surface membrane of different types of cells lines such as PC12, GT1-7, and ex vivo neurons. Analyses were performed on sorted cells with membrane bound Aβ Competitive binding between Aβ phosphatidyl serine- (PtdSer-) specific binder annexin V and an anti-PtdSer antibody provided compelling data confirming the involvement of PtdSer as one of the surface membrane signal molecules for Aβ. We found that populations of cells that exhibited high surface membrane binding affinity for Aβ also show higher membrane cholesterol levels compared to cells that did not bind Aβ. This direct relationship was upheld in cholesterol-enriched or cholesterol-depleted cell membranes. We conclude that the initial process for the cell-selective binding by Aβ, to later conversion of elemental Aβ units into larger structures such as fibrils or to the potentially toxic ion channel aggregates, is highly influenced by the membrane content of PtdSer and cholesterol in the cell surface membrane.

摘要

我们对β-淀粉样蛋白(Aβ)与不同类型细胞系(如PC12、GT1-7)以及离体神经元表面膜的结合进行了荧光分析。对具有膜结合Aβ的分选细胞进行了分析。Aβ与磷脂酰丝氨酸(PtdSer)特异性结合蛋白膜联蛋白V和抗PtdSer抗体之间的竞争性结合提供了有力数据,证实PtdSer作为Aβ的表面膜信号分子之一参与其中。我们发现,与未结合Aβ的细胞相比,对Aβ表现出高表面膜结合亲和力的细胞群体也显示出更高的膜胆固醇水平。这种直接关系在富含胆固醇或胆固醇耗尽的细胞膜中均成立。我们得出结论,Aβ细胞选择性结合的初始过程,以及随后将基本Aβ单元转化为更大结构(如纤维)或潜在有毒离子通道聚集体的过程,受到细胞表面膜中PtdSer和胆固醇膜含量的高度影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba5a/3132545/c9ec7b849da3/IJAD2011-917629.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验