Department of Psychology, Southern Illinois University, 281 LSII, Mailcode 6502, Carbondale, IL 62901, USA.
Behav Res Methods. 2012 Mar;44(1):176-88. doi: 10.3758/s13428-011-0133-5.
The choice of stimulus values to test in any experiment is a critical component of good experimental design. This study examines the consequences of random and systematic sampling of data values for the identification of functional relationships in experimental settings. Using Monte Carlo simulation, uniform random sampling was compared with systematic sampling of two, three, four, or N equally spaced values along a single stimulus dimension. Selection of the correct generating function (a logistic or a linear model) was improved with each increase in the number of levels sampled, with N equally spaced values and random stimulus sampling performing similarly. These improvements came at a small cost in the precision of the parameter estimates for the generating function.
在任何实验中选择刺激值进行测试是良好实验设计的关键组成部分。本研究通过蒙特卡罗模拟,考察了在实验环境中随机和系统采样数据值对识别功能关系的影响。本研究比较了在单个刺激维度上,以两种、三种、四种或 N 种等间距值进行系统采样与均匀随机采样。随着采样水平数量的增加,正确生成函数(逻辑或线性模型)的选择得到了改善,其中 N 种等间距值和随机刺激采样的效果相似。这些改进是以生成函数参数估计的精度为代价的。