Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche (Alicante), Spain.
Biomacromolecules. 2011 Sep 12;12(9):3252-64. doi: 10.1021/bm2007168. Epub 2011 Jul 26.
The C-terminal domain (CTD) of the capsid protein (CA) of HIV-1 participates both in the formation of CA hexamers and in the joining of hexamers through homodimerization to form the viral capsid. Intact CA and the CTD are able to homodimerize with similar affinity (~15 μM); CTD homodimerization involves mainly an α-helical region. We have designed peptides derived from that helix with predicted higher helical propensities than the wild-type sequence while keeping residues important for dimerization. These peptides showed a higher helicity than that of the wild-type peptide, although not as high as theoretically predicted, and proved to be able to self-associate with apparent affinities similar to that of the whole CTD. However, binding to CTD mainly occurs at the last helical region of the protein. Accordingly, most of those peptides are unable to inhibit CA polymerization in vitro. Therefore, there is a subtle tuning between monomer-monomer interactions important for CTD dimerization and the maximal helical content achieved by the wild-type sequence of the interface.
HIV-1 衣壳蛋白 (CA) 的 C 末端结构域 (CTD) 既参与 CA 六聚体的形成,又通过同源二聚化将六聚体连接起来形成病毒衣壳。完整的 CA 和 CTD 能够以相似的亲和力(~15 μM)进行同源二聚化;CTD 同源二聚化主要涉及一个α-螺旋区域。我们设计了源自该螺旋的肽段,与野生型序列相比,这些肽段具有预测更高的螺旋倾向,同时保留了对二聚化重要的残基。这些肽段的螺旋度高于野生型肽段,但不如理论预测的那么高,并且被证明能够自我缔合,表观亲和力与整个 CTD 相似。然而,与 CTD 的结合主要发生在蛋白质的最后一个螺旋区域。因此,大多数肽段都无法在体外抑制 CA 聚合。因此,对于 CTD 同源二聚化重要的单体-单体相互作用和野生型序列在界面上达到的最大螺旋含量之间存在微妙的调整。