Stem Cell Sciences UK Ltd, Cambridge, UK.
Neurochem Int. 2011 Sep;59(3):432-44. doi: 10.1016/j.neuint.2011.06.024. Epub 2011 Jul 14.
The utilization of neural stem cells and their progeny in applications such as disease modelling, drug screening or safety assessment will require the development of robust methods for consistent, high quality uniform cell production. Previously, we described the generation of adherent, homogeneous, non-immortalized mouse and human neural stem cells derived from both brain tissue and pluripotent embryonic stem cells (Conti et al., 2005; Sun et al., 2008). In this study, we report the isolation or derivation of stable neurogenic human NS (hNS) lines from different regions of the 8-9 gestational week fetal human central nervous system (CNS) using new serum-free media formulations including animal component-free conditions. We generated more than 20 adherent hNS lines from whole brain, cortex, lobe, midbrain, hindbrain and spinal cord. We also compared the adherent hNS to some aspects of the human CNS-stem cells grown as neurospheres (hCNS-SCns), which were derived from prospectively isolated CD133(+)CD24(-/lo) cells from 16 to 20 gestational week fetal brain. We found, by RT-PCR and Taqman low-density array, that some of the regionally isolated lines maintained their regional identity along the anteroposterior axis. These NS cells exhibit the signature marker profile of neurogenic radial glia and maintain neurogenic and multipotential differentiation ability after extensive long-term expansion. Similarly, hCNS-SC can be expanded either as neurospheres or in extended adherent monolayer with a morphology and marker expression profile consistent with radial glia NS cells. We demonstrate that these lines can be efficiently genetically modified with standard nucleofection protocols for both protein overexpression and siRNA knockdown of exogenously expressed and endogenous genes exemplified with GFP and Nestin. To investigate the functional maturation of neuronal progeny derived from hNS we (a) performed Agilent whole genome microarray gene expression analysis from cultures undergoing neuronal differentiation for up to 32 days and found increased expression over time for a number of drugable target genes including neurotransmitter receptors and ion channels and (b) conducted a neuropharmacology study utilizing Fura-2 Ca(2+) imaging which revealed a clear shift from an initial glial reaction to carbachol to mature neuron-specific responses to glutamate and potassium after prolonged neuronal differentiation. Fully automated culture and scale-up of select hNS was achieved; cells supplied by the robot maintained the molecular profile of multipotent NS cells and performed faithfully in neuronal differentiation experiments. Here, we present validation and utility of a human neural lineage-restricted stem cell-based assay platform, including scale-up and automation, genetic engineering and functional characterization of differentiated progeny.
利用神经干细胞及其后代进行疾病建模、药物筛选或安全性评估等应用,需要开发稳健的方法来实现一致、高质量的均匀细胞生产。之前,我们描述了从脑组织和多能胚胎干细胞中生成贴壁、同质、非永生化的小鼠和人神经干细胞(Conti 等人,2005 年;Sun 等人,2008 年)。在这项研究中,我们使用新的无血清培养基配方(包括无动物成分条件),从 8-9 孕周胎儿中枢神经系统(CNS)的不同区域分离或衍生出稳定的神经发生人 NS(hNS)系。我们从整个大脑、皮质、叶、中脑、后脑和脊髓中生成了 20 多个贴壁 hNS 系。我们还将贴壁 hNS 与一些从 16-20 孕周胎儿大脑中分离出来的 CD133(+)CD24(-/lo)细胞生长的神经球(hCNS-SCns)的一些方面进行了比较。通过 RT-PCR 和 Taqman 低密度阵列,我们发现一些区域分离的系沿着前后轴保持其区域身份。这些 NS 细胞表现出神经发生放射状胶质的特征标记谱,并在广泛的长期扩增后保持神经发生和多能分化能力。同样,hCNS-SC 可以作为神经球或在扩展的贴壁单层中扩增,其形态和标记表达谱与放射状胶质 NS 细胞一致。我们证明,这些系可以通过标准的核转染方案进行有效的基因修饰,用于过表达和内源性基因的 siRNA 敲低,例如 GFP 和 Nestin。为了研究源自 hNS 的神经元前体的功能成熟,我们 (a) 对进行神经元分化长达 32 天的培养物进行了安捷伦全基因组微阵列基因表达分析,发现随着时间的推移,许多可治疗的靶基因(包括神经递质受体和离子通道)的表达增加,以及 (b) 进行了神经药理学研究,利用 Fura-2 Ca(2+) 成像,发现从初始的胶质反应到 carbachol 的明显转变为谷氨酸和钾诱导的成熟神经元特异性反应,在延长的神经元分化后。通过机器人实现了选择的 hNS 的全自动培养和放大;机器人提供的细胞保持多能 NS 细胞的分子谱,并在神经元分化实验中忠实地发挥作用。在这里,我们提出了一种基于人神经谱系限制干细胞的测定平台的验证和应用,包括放大和自动化、分化后代的基因工程和功能表征。