Max-Planck-Institute for Molecular Biomedicine, Münster, Germany.
PLoS Biol. 2011 Jul;9(7):e1001099. doi: 10.1371/journal.pbio.1001099. Epub 2011 Jul 12.
Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH⁻/⁻ mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH⁻/⁻-induced pluripotent stem cells (iPS cells) as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH⁻/⁻ iPS cell lines, we aggregated FAH⁻/⁻-iPS cells with tetraploid embryos and obtained entirely FAH⁻/⁻-iPS cell-derived mice that were viable and exhibited the phenotype of the founding FAH⁻/⁻ mice. Then, we transduced FAH cDNA into the FAH⁻/⁻-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell-derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione). Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR)-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV)-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models.
利用 1 型酪氨酸血症(延胡索酰乙酰乙酸水解酶 [FAH] 缺乏;FAH⁻/⁻ 小鼠)的鼠模型作为孤儿疾病(如遗传性代谢性肝病)的范例,我们评估了成纤维细胞衍生的 FAH⁻/⁻-诱导多能干细胞(iPS 细胞)作为与四倍体胚胎互补方法相结合的基因纠正的靶标。首先,在表征 FAH⁻/⁻ iPS 细胞系之后,我们将 FAH⁻/⁻-iPS 细胞与四倍体胚胎聚集在一起,获得了完全由 FAH⁻/⁻-iPS 细胞衍生的存活并表现出创始 FAH⁻/⁻ 小鼠表型的小鼠。然后,我们使用第三代慢病毒载体将 FAH cDNA 转导到 FAH⁻/⁻-iPS 细胞中,以产生基因纠正的 iPS 细胞。我们无法通过高分辨率阵列 CGH 分析检测到这些细胞中的任何染色体改变,并且在它们与四倍体胚胎聚集之后,我们获得了完全由 iPS 细胞衍生的健康小鼠,其完全由 iPS 细胞衍生的健康小鼠的效率令人惊讶地高达 63.3%,可实现足月发育。通过撤出挽救药物 NTBC(2-(2-硝基-4-氟甲基苯甲酰基)-1,3-环己二酮)后这些小鼠中 FAH 阳性细胞的长期存活和扩增,功能上验证了基因纠正。此外,我们的结果表明,肝脏特异性启动子(转甲状腺素蛋白,TTR)驱动的 FAH 转基因和强病毒启动子(来自脾焦点形成病毒,SFFV)驱动的 FAH 转基因均挽救了各自基因纠正的 iPS 细胞衍生的小鼠中的 FAH 缺乏表型。总之,我们的数据表明,慢病毒基因修复策略不会消除成纤维细胞衍生的 iPS 细胞的完全多能潜能,并且 iPS 细胞的遗传操作与四倍体胚胎聚集相结合,为在小鼠模型中评估人类疾病的基因纠正功效提供了一种实用且快速的方法。