Department of Applied Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
Phys Chem Chem Phys. 2011 Sep 7;13(33):14953-9. doi: 10.1039/c1cp21062a. Epub 2011 Jul 21.
The role of B(CN)(4)(-) (Bison) as a component of battery electrolytes is addressed by investigating the ionic conductivity and phase behaviour of ionic liquids (ILs), ion association mechanisms, and the electrochemical stability and cycling properties of LiBison based electrochemical cells. For C(4)mpyrBison and C(2)mimBison ILs, and mixtures thereof, high ionic conductivities (3.4 ≤σ(ion)≤ 18 mS cm(-1)) are measured, which together with the glass transition temperatures (-80 ≤T(g)≤-76 °C) are found to shift systematically for most compositions. Unfortunately, poor solubility of LiBison in these ILs hinders their use as solvents for lithium salts, although good NaBison solubility offers an alternative application in Na(+) conducting electrolytes. The poor IL solubility of LiBison is predicted to be a result of a preferred monodentate ion association, according to first principles modelling, supported by Raman spectroscopy. The solubility is much improved in strongly Li(+) coordinating oligomers, for example polyethylene glycol dimethyl ether (PEGDME), with the practical performance tested in electrochemical cells. The electrolyte is found to be stable in Li/LiFePO(4) coin cells up to 4 V vs. Li and shows promising cycling performance, with a capacity retention of 99% over 22 cycles.
探讨了 B(CN)(4)(-)(野牛)作为电池电解质组成部分的作用,研究了离子液体(ILs)的离子电导率和相行为、离子缔合机制,以及基于 LiBison 的电化学电池的电化学稳定性和循环性能。对于 C(4)mpyrBison 和 C(2)mimBison ILs 及其混合物,测量到了较高的离子电导率(3.4 ≤σ(ion)≤ 18 mS cm(-1)),并且随着组成的变化,这些 ILs 的玻璃化转变温度(-80 ≤T(g)≤-76°C)也发生了系统性的变化。不幸的是,LiBison 在这些 ILs 中的溶解度较差,阻碍了它们作为锂盐溶剂的应用,尽管良好的 NaBison 溶解度为 Na(+)导电电解质提供了另一种应用。根据第一性原理模型和拉曼光谱的预测,LiBison 在 IL 中的低溶解度是由于优先形成单齿离子缔合所致。根据第一性原理模型和拉曼光谱的预测,在强 Li(+)配位的低聚物(例如聚乙二醇二甲醚(PEGDME))中,LiBison 的溶解度得到了很大提高,并且在电化学电池中对实际性能进行了测试。该电解质在 Li/LiFePO(4)纽扣电池中稳定至 4 V vs. Li,并表现出良好的循环性能,经过 22 次循环后容量保持率为 99%。