Hu Yulong, Liu Hongfang, Rao Qiuhua, Kong Xiaodong, Sun Wei, Guo Xingpeng
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
J Nanosci Nanotechnol. 2011 Apr;11(4):3434-44. doi: 10.1166/jnn.2011.3746.
N-doped TiO2 nanocrystalline powders were prepared by the sol-gel method using various N precursors, including triethylamine, hydrazine hydrate, ethylenediamine, ammonium hydroxide, and urea. The samples were characterized by X-ray diffraction, N2 adsorption isotherms, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of as-prepared samples under irradiation of visible light (lambda > 405 nm) were evaluated by photodecomposition of methyl orange. The alkalinity of N precursor was found to play a key role in the gel process. The N precursor with moderate alkalinity causes TiO2 nanoparticles to be sol-transformed into a loosely agglomerated gel. This transformation facilitates the preparation of an N-doped TiO2 powder with small nanocrystal size, large specific surface area, and high N doping level and results in high visible light photocatalytic activity. The N in TiO2 with N is binding energy at 399-400 eV may be assigned to the N-H species located in interstitial sites of TiO2 lattice which is the active N species responsible for the visible light photocatalytic activity. The N species of N 1s peak at 402 and 405 eV are ineffective to the visible light photocatalytic activity and may inhibit the photocatalytic activity. Moreover, a TiO2 nanoparticle powder with large specific area can be achieved by using urea as a template and then by using ammonium hydroxide to transform the sol into gel.
采用溶胶-凝胶法,使用包括三乙胺、水合肼、乙二胺、氢氧化铵和尿素在内的各种氮前驱体制备了氮掺杂二氧化钛纳米晶粉末。通过X射线衍射、N₂吸附等温线、透射电子显微镜、紫外-可见漫反射光谱、傅里叶变换红外光谱和X射线光电子能谱对样品进行了表征。通过甲基橙的光分解评估了所制备样品在可见光(λ>405nm)照射下的光催化活性。发现氮前驱体的碱度在凝胶过程中起关键作用。具有适度碱度的氮前驱体使二氧化钛纳米颗粒溶胶转变为松散团聚的凝胶。这种转变有助于制备具有小纳米晶体尺寸、大比表面积和高氮掺杂水平的氮掺杂二氧化钛粉末,并导致高可见光光催化活性。氮结合能在399-400eV的二氧化钛中的氮可能归因于位于二氧化钛晶格间隙位置的N-H物种,这是负责可见光光催化活性的活性氮物种。402和405eV处N1s峰的氮物种对可见光光催化活性无效,可能会抑制光催化活性。此外,通过使用尿素作为模板,然后使用氢氧化铵将溶胶转变为凝胶,可以获得具有大比表面积的二氧化钛纳米颗粒粉末。