Suppr超能文献

DNA 序列向金属扶手椅型碳纳米管识别的进化。

Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes.

机构信息

Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.

出版信息

J Am Chem Soc. 2011 Aug 24;133(33):12998-3001. doi: 10.1021/ja205407q. Epub 2011 Jul 28.

Abstract

The armchair carbon nanotube is an ideal system to study fundamental physics in one-dimensional metals and potentially a superb material for applications such as electrical power transmission. Synthesis and purification efforts to date have failed to produce a homogeneous population of such a material. Here we report evolutionary strategies to find DNA sequences for the recognition and subsequent purification of (6,6) and (7,7) armchair species from synthetic mixtures. The new sequences were derived by single-point scanning mutation and sequence motif variation of previously identified ones for semiconducting tubes. Optical absorption spectroscopy of the purified armchair tubes revealed well-resolved first- and second-order electronic transitions accompanied by prominent sideband features that have neither been predicted nor observed previously. Resonance Raman spectroscopy showed a single Lorentzian peak for the in-plane carbon-carbon stretching mode (G band) of the armchair tubes, repudiating the common practice of using such a line shape to infer the absence of metallic species. Our work demonstrates the exquisite sensitivity of DNA to nanotube metallicity and makes the long-anticipated pure armchair tubes available as seeds for their mass amplification.

摘要

扶手椅型碳纳米管是研究一维金属中基础物理的理想体系,并且有可能成为电力传输等应用的绝佳材料。迄今为止,合成和纯化工作都未能产生这种材料的均匀群体。在这里,我们报告了进化策略,用于寻找用于识别和随后从合成混合物中纯化(6,6)和(7,7)扶手椅物种的 DNA 序列。新序列是通过单点扫描突变和先前为半导体管鉴定的序列模体变化而衍生的。纯化的扶手椅管的光吸收光谱显示出良好分辨的一阶和二阶电子跃迁,伴有突出的边带特征,这些特征以前既没有预测也没有观察到。共振拉曼光谱显示扶手椅管的面内碳-碳伸缩模式(G 带)的单个洛伦兹峰,驳斥了使用这种线形状来推断不存在金属物种的常见做法。我们的工作证明了 DNA 对纳米管金属性的极高灵敏度,并使长期预期的纯扶手椅管可用作其大规模扩增的种子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验