Suppr超能文献

龟鳖类的多尺度层次结构:龟壳的微观结构和力学性能。

Multi-scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell.

机构信息

Biomaterials Processing and Characterization Laboratory, Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.

出版信息

J Mech Behav Biomed Mater. 2011 Oct;4(7):1440-51. doi: 10.1016/j.jmbbm.2011.05.014. Epub 2011 May 17.

Abstract

Carapace, the protective shell of a freshwater snapping turtle, Chelydra serpentina, shields them from ferocious attacks of their predators while maintaining light-weight and agility for a swim. The microstructure and mechanical properties of the turtle shell are very appealing to materials scientists and engineers for bio-mimicking, to obtain a multi-functional surface. In this study, we have elucidated the complex microstructure of a dry Chelydra serpentina's shell which is very similar to a multi-layered composite structure. The microstructure of a turtle shell's carapace elicits a sandwich structure of waxy top surface with a harder sub-surface layer serving as a shielding structure, followed by a lamellar carbonaceous layer serving as shock absorber, and the inner porous matrix serves as a load-bearing scaffold while acting as reservoir of retaining water and nutrients. The mechanical properties (elastic modulus and hardness) of various layers obtained via nanoindentation corroborate well with the functionality of each layer. Elastic modulus ranged between 0.47 and 22.15 GPa whereas hardness varied between 53.7 and 522.2 MPa depending on the microstructure of the carapace layer. Consequently, the modulus of each layer was represented into object oriented finite element (OOF2) modeling towards extracting the overall effective modulus of elasticity (~4.75 GPa) of a turtle's carapace. Stress distribution of complex layered structure was elicited with an applied strain of 1% in order to understand the load sharing of various composite layers in the turtle's carapace.

摘要

龟壳是淡水鳄龟的保护壳,可保护它们免受捕食者的凶猛攻击,同时保持游泳时的轻巧和敏捷。龟壳的微观结构和机械性能对材料科学家和工程师非常有吸引力,他们希望通过仿生学获得多功能表面。在这项研究中,我们阐明了干燥的鳄龟壳的复杂微观结构,它非常类似于多层复合材料结构。龟壳的微观结构呈现出一种蜡质的上表面和更硬的次表面层的三明治结构,作为屏蔽结构,其次是作为减震器的层状碳质层,内部多孔基质作为承载支架,同时作为储水和养分的储存库。通过纳米压痕法获得的各层的机械性能(弹性模量和硬度)与各层的功能非常吻合。弹性模量在 0.47 到 22.15 GPa 之间变化,而硬度则根据壳层的微观结构在 53.7 到 522.2 MPa 之间变化。因此,根据各层的模量,将其表示为面向对象的有限元(OOF2)建模,以提取龟壳的整体有效弹性模量(~4.75 GPa)。通过施加 1%的应变来引出复杂层状结构的应力分布,以了解龟壳中各复合层的载荷分担情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验