Suppr超能文献

针对语音多流识别中的流融合优化。

Toward optimizing stream fusion in multistream recognition of speech.

机构信息

Department of Neurological Surgery, University of California, San Francisco, California 94122, USA.

出版信息

J Acoust Soc Am. 2011 Jul;130(1):EL14-8. doi: 10.1121/1.3595744.

Abstract

A multistream phoneme recognition framework is proposed based on forming streams from different spectrotemporal modulations of speech. Phoneme posterior probabilities were estimated from each stream separately and combined at the output level. A statistical model of the final estimated posterior probabilities is used to characterize the system performance. During the operation, the best fusion architecture is chosen automatically to maximize the similarity of output statistics to clean condition. Results on phoneme recognition from noisy speech indicate the effectiveness of the proposed method.

摘要

提出了一种基于从语音的不同时频调制形成流的多流音素识别框架。从每个流分别估计音素后验概率,并在输出级别进行组合。最终估计后验概率的统计模型用于描述系统性能。在操作过程中,自动选择最佳融合架构,以最大化输出统计与清洁条件的相似性。来自噪声语音的音素识别结果表明了所提出方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验