Suppr超能文献

Chemical and crystallographic events in the caries process.

作者信息

LeGeros R Z

机构信息

New York University College of Dentistry, New York 10010.

出版信息

J Dent Res. 1990 Feb;69 Spec No:567-74; discussion 634-6. doi: 10.1177/00220345900690S113.

Abstract

The chemical and crystallographic events associated with the caries process can be described based on the results from the following studies: (a) effects of carbonate, magnesium, fluoride, and strontium on the physico-chemical properties--lattice parameters, crystallinity (crystal size and strain); dissolution properties of synthetic apatites; (b) factors influencing the in vitro formation and transformation of DCPD, OCP, AP (Ca-deficient apatites), FAP, beta-TCMP (Mg-substituted), and CaF2; and (c) studies on properties (crystallinity, composition, chemical, and thermal stabilities) of enamel, dentin, and bone. The dissolution of CO3-rich/Mg-rich/F-poor dental apatite crystals and re-precipitation of CO3-poor/Mg-poor/F-rich apatite in the presence of F- ions in solution contribute to a more acid-resistant surface layer of the caries lesion. Fluoride promotes the formation of less Ca-deficient and more stable apatite crystals. The presence of Ca, P, and F in solution inhibits dissolution of apatite more than does the presence of F alone. Low levels of F in solution promote the formation of (F, OH)-apatite, even under very acid conditions; an increase in F levels causes the formation of CaF2 at the expense of DCPD or apatite, especially in acid conditions. F in apatite and/or in solution suppresses extensive dissolution of dental apatite and enhances the formation of (F, OH)-apatite crystals which are more resistant against acid-dissolution than are F-free apatite crystals.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验