Suppr超能文献

通过非负性约束减少吉布斯伪影

Gibbs artifact reduction by nonnegativity constraint.

作者信息

Zeng Gengsheng L

机构信息

Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah 84108, USA.

出版信息

J Nucl Med Technol. 2011 Sep;39(3):213-9. doi: 10.2967/jnmt.110.086439. Epub 2011 Jul 27.

Abstract

UNLABELLED

This paper proposes a 2-step image reconstruction method in which the nonnegativity constraint in the iterative maximum-likelihood expectation maximization (MLEM) algorithm is used to effectively reduce Gibbs ringing artifacts.

METHODS

Gibbs artifacts are difficult to control during imaging reconstruction. The proposed method uses the postprocessing strategy to suppress Gibbs artifacts. In the first step, a raw image is reconstructed from projections without correction for point spread function (PSF). The attenuation correction can be performed in the first step by using, for example, the iterative MLEM or ordered-subsets expectation maximization (OS-EM) algorithm. The second step is a postprocessing procedure that corrects for the PSF blurring effect. If the target features (e.g., hot lesions) have a positive background, removing the background before application of the postprocessing filter significantly helps with target deblurring and Gibbs artifact suppression. This postprocessing filter is the image-domain MLEM algorithm. The background activity is attached back to the foreground after lesion sharpening.

RESULTS

Computer simulations and PET phantom studies were performed using the proposed 2-step method. The background removal strategy significantly reduced Gibbs artifacts.

CONCLUSION

Gibbs ringing artifacts generated during image reconstruction are difficult to avoid if compensation for the PSF of the system is needed. The strategy of separating image reconstruction from PSF compensation has been shown effective in removal of Gibbs ringing artifacts.

摘要

未标注

本文提出了一种两步图像重建方法,其中迭代最大似然期望最大化(MLEM)算法中的非负性约束用于有效减少吉布斯振铃伪影。

方法

在成像重建过程中,吉布斯伪影难以控制。所提出的方法采用后处理策略来抑制吉布斯伪影。第一步,从投影重建原始图像,不校正点扩散函数(PSF)。例如,可以在第一步中使用迭代MLEM或有序子集期望最大化(OS-EM)算法进行衰减校正。第二步是校正PSF模糊效应的后处理过程。如果目标特征(例如,热病变)具有正背景,在应用后处理滤波器之前去除背景将显著有助于目标去模糊和吉布斯伪影抑制。此 后处理滤波器是图像域MLEM算法。在病变锐化后,将背景活性重新附着到前景上。

结果

使用所提出的两步方法进行了计算机模拟和PET体模研究。背景去除策略显著减少了吉布斯伪影。

结论

如果需要对系统的PSF进行补偿,在图像重建过程中产生的吉布斯振铃伪影难以避免。将图像重建与PSF补偿分离的策略已被证明在去除吉布斯振铃伪影方面是有效的。

相似文献

1
Gibbs artifact reduction by nonnegativity constraint.通过非负性约束减少吉布斯伪影
J Nucl Med Technol. 2011 Sep;39(3):213-9. doi: 10.2967/jnmt.110.086439. Epub 2011 Jul 27.
9
10
Gibbs-ringing artifact removal based on local subvoxel-shifts.基于局部亚体素移位的吉布斯振铃伪影去除
Magn Reson Med. 2016 Nov;76(5):1574-1581. doi: 10.1002/mrm.26054. Epub 2015 Nov 24.

引用本文的文献

3
Gibbs Artifacts Removal with Nonlinearity.基于非线性的吉布斯伪影去除
J Biotechnol Appl. 2023;2(1). doi: 10.33425/2771-9014.1011. Epub 2023 Aug 20.
5
One-View Time-of-Flight Positron Emission Tomography Reconstruction.单视角飞行时间正电子发射断层扫描重建
IEEE Trans Radiat Plasma Med Sci. 2021 Sep;5(5):723-728. doi: 10.1109/trpms.2020.3038810. Epub 2020 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验