Suppr超能文献

绿色系统生物学——从单个基因组、蛋白质组和代谢组到生态系统研究和生物技术。

Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.

机构信息

Department of Molecular Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.

出版信息

J Proteomics. 2011 Dec 10;75(1):284-305. doi: 10.1016/j.jprot.2011.07.010. Epub 2011 Jul 23.

Abstract

Plants have shaped our human life form from the outset. With the emerging recognition of world population feeding, global climate change and limited energy resources with fossil fuels, the relevance of plant biology and biotechnology is becoming dramatically important. One key issue is to improve plant productivity and abiotic/biotic stress resistance in agriculture due to restricted land area and increasing environmental pressures. Another aspect is the development of CO(2)-neutral plant resources for fiber/biomass and biofuels: a transition from first generation plants like sugar cane, maize and other important nutritional crops to second and third generation energy crops such as Miscanthus and trees for lignocellulose and algae for biomass and feed, hydrogen and lipid production. At the same time we have to conserve and protect natural diversity and species richness as a foundation of our life on earth. Here, biodiversity banks are discussed as a foundation of current and future plant breeding research. Consequently, it can be anticipated that plant biology and ecology will have more indispensable future roles in all socio-economic aspects of our life than ever before. We therefore need an in-depth understanding of the physiology of single plant species for practical applications as well as the translation of this knowledge into complex natural as well as anthropogenic ecosystems. Latest developments in biological and bioanalytical research will lead into a paradigm shift towards trying to understand organisms at a systems level and in their ecosystemic context: (i) shotgun and next-generation genome sequencing, gene reconstruction and annotation, (ii) genome-scale molecular analysis using OMICS technologies and (iii) computer-assisted analysis, modeling and interpretation of biological data. Systems biology combines these molecular data, genetic evolution, environmental cues and species interaction with the understanding, modeling and prediction of active biochemical networks up to whole species populations. This process relies on the development of new technologies for the analysis of molecular data, especially genomics, metabolomics and proteomics data. The ambitious aim of these non-targeted 'omic' technologies is to extend our understanding beyond the analysis of separated parts of the system, in contrast to traditional reductionistic hypothesis-driven approaches. The consequent integration of genotyping, pheno/morphotyping and the analysis of the molecular phenotype using metabolomics, proteomics and transcriptomics will reveal a novel understanding of plant metabolism and its interaction with the environment. The analysis of single model systems - plants, fungi, animals and bacteria - will finally emerge in the analysis of populations of plants and other organisms and their adaptation to the ecological niche. In parallel, this novel understanding of ecophysiology will translate into knowledge-based approaches in crop plant biotechnology and marker- or genome-assisted breeding approaches. In this review the foundations of green systems biology are described and applications in ecosystems research are presented. Knowledge exchange of ecosystems research and green biotechnology merging into green systems biology is anticipated based on the principles of natural variation, biodiversity and the genotype-phenotype environment relationship as the fundamental drivers of ecology and evolution.

摘要

植物从一开始就塑造了我们的人类形态。随着人们对世界人口的粮食供应、全球气候变化以及化石燃料有限的能源资源的认识不断提高,植物生物学和生物技术的相关性变得越来越重要。一个关键问题是提高农业的植物生产力和抗非生物/生物胁迫能力,因为农业的土地面积有限,环境压力不断增加。另一个方面是开发 CO(2)-中性植物资源用于纤维/生物质和生物燃料:从第一代植物(如甘蔗、玉米和其他重要的营养作物)向第二代和第三代能源作物(如芒草和树木用于木质纤维素和藻类用于生物质和饲料、氢气和脂质生产)的转变。与此同时,我们必须保护和维护自然多样性和物种丰富度,作为我们地球上生命的基础。在这里,讨论了生物多样性库作为当前和未来植物育种研究的基础。因此,可以预见,植物生物学和生态学将在我们生活的所有社会经济方面发挥比以往任何时候都更加不可或缺的作用。因此,我们需要深入了解单个植物物种的生理学,以便将这方面的知识应用于实践,并将其转化为复杂的自然和人为生态系统。生物和生物分析研究的最新进展将导致一种范式转变,即试图在系统水平和生态系统环境中理解生物体:(i) 随机和下一代基因组测序、基因重构和注释,(ii) 使用 OMICS 技术进行基因组规模的分子分析,以及(iii) 计算机辅助分析、建模和解释生物数据。系统生物学将这些分子数据、遗传进化、环境线索和物种相互作用与对活性生化网络的理解、建模和预测结合起来,直至整个物种群体。这个过程依赖于开发新的技术来分析分子数据,特别是基因组学、代谢组学和蛋白质组学数据。这些非靶向“组学”技术的雄心勃勃的目标是超越对系统分离部分的分析,与传统的还原论假设驱动方法形成对比。使用代谢组学、蛋白质组学和转录组学对基因型、表型/形态型和分子表型的分析进行整合,将揭示对植物代谢及其与环境相互作用的新认识。对单个模型系统(植物、真菌、动物和细菌)的分析最终将出现在对植物和其他生物种群及其对生态位的适应的分析中。与此同时,这种对生态生理学的新认识将转化为基于作物生物技术和标记或基因组辅助育种方法的知识驱动方法。在这篇综述中,描述了绿色系统生物学的基础,并介绍了其在生态系统研究中的应用。基于自然变异、生物多样性和基因型-表型-环境关系的原理,预计生态系统研究和绿色生物技术的知识交流将融合到绿色系统生物学中,这些原理是生态学和进化的基本驱动因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验