Suppr超能文献

通过二维T(2)-T(2)相关核磁共振光谱法测量弹性蛋白中水合水的交换率

Measurement of the Exchange Rate of Waters of Hydration in Elastin by 2D T(2)-T(2) Correlation Nuclear Magnetic Resonance Spectroscopy.

作者信息

Sun Cheng, Boutis Gregory S

机构信息

Brooklyn College, Department of Physics 2900 Bedford Avenue Brooklyn NY 11210.

出版信息

New J Phys. 2011 Feb 28;13:2-16. doi: 10.1088/1367-2630/13/2/025026.

Abstract

We report on the direct measurement of the exchange rate of waters of hydration in elastin by T(2)-T(2) exchange spectroscopy. The exchange rates in bovine nuchal ligament elastin and aortic elastin at temperatures near, below and at the physiological temperature are reported. Using an Inverse Laplace Transform (ILT) algorithm, we are able to identify four components in the relaxation times. While three of the components are in good agreement with previous measurements that used multi-exponential fitting, the ILT algorithm distinguishes a fourth component having relaxation times close to that of free water and is identified as water between fibers. With the aid of scanning electron microscopy, a model is proposed allowing for the application of a two-site exchange analysis between any two components for the determination of exchange rates between reservoirs. The results of the measurements support a model (described elsewhere [1]) wherein the net entropy of bulk waters of hydration should increase upon increasing temperature in the inverse temperature transition.

摘要

我们报告了通过T(2)-T(2)交换光谱法对弹性蛋白中水合水交换率的直接测量。报告了牛颈部韧带弹性蛋白和主动脉弹性蛋白在接近、低于和生理温度下的交换率。使用逆拉普拉斯变换(ILT)算法,我们能够在弛豫时间中识别出四个成分。虽然其中三个成分与之前使用多指数拟合的测量结果高度一致,但ILT算法区分出了第四个成分,其弛豫时间与自由水相近,被确定为纤维间的水。借助扫描电子显微镜,提出了一个模型,允许在任意两个成分之间应用两点交换分析来确定储库之间的交换率。测量结果支持了一个模型(在其他地方有描述[1]),即在逆温度转变中,随着温度升高,大量水合水的净熵应该增加。

相似文献

2
NMR studies of localized water and protein backbone dynamics in mechanically strained elastin.
J Phys Chem B. 2011 Dec 1;115(47):13935-42. doi: 10.1021/jp207607r. Epub 2011 Nov 7.
4
2H and 13C NMR studies on the temperature-dependent water and protein dynamics in hydrated elastin, myoglobin and collagen.
Biochim Biophys Acta. 2010 Jan;1804(1):41-8. doi: 10.1016/j.bbapap.2009.06.009. Epub 2009 Jun 21.
5
Investigation of the dynamical properties of water in elastin by deuterium Double Quantum Filtered NMR.
J Magn Reson. 2010 Jul;205(1):86-92. doi: 10.1016/j.jmr.2010.04.007. Epub 2010 Apr 18.
6
Characterization of water in hydrated Bombyx mori silk fibroin fiber and films by H NMR relaxation and C solid state NMR.
Acta Biomater. 2017 Mar 1;50:322-333. doi: 10.1016/j.actbio.2016.12.052. Epub 2017 Jan 5.
7
A novel improved method for analysis of 2D diffusion-relaxation data--2D PARAFAC-Laplace decomposition.
J Magn Reson. 2007 Sep;188(1):10-23. doi: 10.1016/j.jmr.2007.05.018. Epub 2007 Jun 8.
8
Tracking pore to pore exchange using relaxation exchange spectroscopy.
Phys Rev Lett. 2006 Oct 27;97(17):175502. doi: 10.1103/PhysRevLett.97.175502. Epub 2006 Oct 23.
9
Inverse Laplace transformation analysis of stretched exponential relaxation.
J Magn Reson. 2021 Oct;331:107050. doi: 10.1016/j.jmr.2021.107050. Epub 2021 Aug 21.
10
Dynamics of uncrystallized water and protein in hydrated elastin studied by thermal and dielectric techniques.
Biochim Biophys Acta. 2013 Jun;1834(6):977-88. doi: 10.1016/j.bbapap.2013.03.015. Epub 2013 Mar 23.

引用本文的文献

1
Low-field and variable-field NMR relaxation studies of H2O and D2O molecular dynamics in articular cartilage.
PLoS One. 2021 Aug 25;16(8):e0256177. doi: 10.1371/journal.pone.0256177. eCollection 2021.
2
Static Solid Relaxation Ordered Spectroscopy: SS-ROSY.
Int J Mol Sci. 2019 Nov 24;20(23):5888. doi: 10.3390/ijms20235888.
3
Characterization of water in hydrated Bombyx mori silk fibroin fiber and films by H NMR relaxation and C solid state NMR.
Acta Biomater. 2017 Mar 1;50:322-333. doi: 10.1016/j.actbio.2016.12.052. Epub 2017 Jan 5.
4
Mechanical, structural, and dynamical modifications of cholesterol exposed porcine aortic elastin.
Biophys Chem. 2016 Nov;218:47-57. doi: 10.1016/j.bpc.2016.09.002. Epub 2016 Sep 9.
5
Pregnancy-Induced Dynamical and Structural Changes of Reproductive Tract Collagen.
Biophys J. 2016 Jul 12;111(1):57-68. doi: 10.1016/j.bpj.2016.05.049.
6
13C, 2h NMR studies of structural and dynamical modifications of glucose-exposed porcine aortic elastin.
Biophys J. 2015 Apr 7;108(7):1758-1772. doi: 10.1016/j.bpj.2015.02.005.
7
NMR Studies of Thermo-responsive Behavior of an Amphiphilic Poly(asparagine) Derivative in Water.
Polymer (Guildf). 2014 Jan 14;55(1):278-286. doi: 10.1016/j.polymer.2013.11.015.
9
Characterizing inter-compartmental water exchange in myelinated tissue using relaxation exchange spectroscopy.
Magn Reson Med. 2013 Nov;70(5):1450-9. doi: 10.1002/mrm.24571. Epub 2012 Dec 11.
10
Thermal hysteresis in the backbone and side-chain dynamics of the elastin mimetic peptide [VPGVG]3 revealed by 2H NMR.
J Phys Chem B. 2012 Jan 12;116(1):555-64. doi: 10.1021/jp208966k. Epub 2011 Dec 20.

本文引用的文献

1
Investigation of the dynamical properties of water in elastin by deuterium Double Quantum Filtered NMR.
J Magn Reson. 2010 Jul;205(1):86-92. doi: 10.1016/j.jmr.2010.04.007. Epub 2010 Apr 18.
2
Validation of NMR relaxation exchange time measurements in porous media.
J Chem Phys. 2007 Dec 21;127(23):234701. doi: 10.1063/1.2806178.
3
High resolution q-space imaging studies of water in elastin.
Biopolymers. 2007;87(5-6):352-9. doi: 10.1002/bip.20838.
4
Observation of exchange of micropore water in cement pastes by two-dimensional T(2)-T(2) nuclear magnetic resonance relaxometry.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 1):061404. doi: 10.1103/PhysRevE.74.061404. Epub 2006 Dec 22.
5
Tracking pore to pore exchange using relaxation exchange spectroscopy.
Phys Rev Lett. 2006 Oct 27;97(17):175502. doi: 10.1103/PhysRevLett.97.175502. Epub 2006 Oct 23.
8
The viscoelastic basis for the tensile strength of elastin.
Int J Biol Macromol. 2002 Apr 8;30(2):119-27. doi: 10.1016/s0141-8130(02)00008-9.
9
T(1)--T(2) correlation spectra obtained using a fast two-dimensional Laplace inversion.
J Magn Reson. 2002 Feb;154(2):261-8. doi: 10.1006/jmre.2001.2474.
10
Hydrophobic hydration is an important source of elasticity in elastin-based biopolymers.
J Am Chem Soc. 2001 Dec 5;123(48):11991-8. doi: 10.1021/ja010363e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验