Suppr超能文献

在未经选择的癌症患者中,大型注册试验是否仍有空间?以晚期非小细胞肺癌中的抗表皮生长因子受体抗体为例。

Is there still room for large registrative trials in unselected cancer patients? The case of anti-epidermal growth factor receptor antibodies in advanced non-small-cell lung cancer.

出版信息

Expert Opin Biol Ther. 2011 Sep;11(9):1131-3. doi: 10.1517/14712598.2011.599799.

Abstract

Necitumumab, a monoclonal antibody directed against EGFR, is currently under development as a treatment for advanced NSCLC. Two Phase III randomized trials are ongoing, testing the addition of necitumumab to first-line platinum-based chemotherapy. In the same setting, cetuximab produced a statistically significant but clinically modest benefit in the whole study population, and no solid data have been produced about predictive factors of efficacy. Will the difference in structure between the two antibodies be enough to obtain a clinically relevant advantage, making real progress in the treatment of advanced NSCLC? Large Phase III trials in unselected patients risk demonstrating statistically significant results with debatable clinical relevance in the whole population, and the study of predictive factors is often left to subgroup analysis performed after the conduction of the trial. We do not need further 'me-too' drugs, or drugs that produce a small benefit in the unselected population. On the contrary, the oncologic community needs drugs to be used with a proper selection of patients, to obtain larger, relevant benefits in molecularly characterized subgroups. Final results of randomized trials with necitumumab in advanced NSCLC are expected in a couple of years.

摘要

尼妥珠单抗是一种针对 EGFR 的单克隆抗体,目前正在开发中,作为晚期 NSCLC 的治疗方法。两项正在进行的 III 期随机试验正在测试将尼妥珠单抗添加到一线铂类化疗中。在相同的情况下,西妥昔单抗在整个研究人群中产生了统计学上显著但临床意义不大的益处,并且没有产生关于疗效预测因素的可靠数据。这两种抗体之间的结构差异是否足以获得临床相关的优势,从而在晚期 NSCLC 的治疗中取得真正的进展?在未经选择的患者中进行的大型 III 期试验有风险在整个人群中产生具有可疑临床相关性的统计学显著结果,而预测因素的研究通常留待试验进行后的亚组分析进行。我们不需要进一步的“me-too”药物,也不需要在未选择人群中产生微小益处的药物。相反,肿瘤学界需要药物在适当选择的患者中使用,以便在分子特征亚组中获得更大、更相关的益处。预计在未来几年内将公布晚期 NSCLC 中尼妥珠单抗的随机试验的最终结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验