Suppr超能文献

成像脂质双层跨膜分子转运。

Imaging molecular transport across lipid bilayers.

机构信息

Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA.

出版信息

Biophys J. 2011 Aug 3;101(3):700-8. doi: 10.1016/j.bpj.2011.06.044.

Abstract

Low-molecular-weight carboxylic acids have many properties common to small molecule drugs. The transport of these acids across cell membranes has been widely studied, but these studies have produced wildly varying permeability values. Recent reports have even claimed that the transport behavior of these drugs is contrary to the rule of thumb called Overton's rule, which holds that more lipophilic molecules transport across lipid membranes more quickly. We used confocal microscopy to image the transport of carboxylic acids with different lipophilicities into a giant unilamellar lipid vesicle (GUV). Fluorescein-dextran, which acts as a pH-sensitive dye, was encapsulated in the GUV to trace the transport of acid. The GUV was immobilized on the surface of a microfluidic channel by biotin-avidin binding. This microchannel allows the rapid and uniform exchange of the solution surrounding the GUV. Using a spinning-disk confocal microscope, the entire concentration field is captured in a short (<100 ms) exposure. Results show that more lipophilic acids cross the bilayer more quickly. A finite difference model was developed to simulate the experimental process and derive permeabilities. The permeabilities change with the same trend as literature oil-water partition coefficients, demonstrating that Overton's rule applies to this class of molecules.

摘要

低分子量羧酸具有许多小分子药物共有的特性。这些酸跨细胞膜的转运已被广泛研究,但这些研究产生了差异极大的通透性值。最近的报告甚至声称,这些药物的转运行为违反了所谓的奥弗顿规则,该规则认为亲脂性分子更快地穿过脂质膜。我们使用共聚焦显微镜将具有不同亲脂性的羧酸成像到巨大的单层脂质囊泡(GUV)中。荧光素葡聚糖作为 pH 敏感染料被包裹在 GUV 中,以追踪酸的转运。GUV 通过生物素-亲和素结合固定在微流道的表面上。这个微通道允许围绕 GUV 的溶液快速且均匀地交换。使用旋转盘共聚焦显微镜,在短时间(<100ms)内捕获整个浓度场。结果表明,亲脂性更强的酸穿过双层膜的速度更快。开发了有限差分模型来模拟实验过程并推导渗透率。渗透率随与文献油水分配系数相同的趋势变化,表明奥弗顿规则适用于这一类分子。

相似文献

1
Imaging molecular transport across lipid bilayers.
Biophys J. 2011 Aug 3;101(3):700-8. doi: 10.1016/j.bpj.2011.06.044.
2
Confocal imaging to quantify passive transport across biomimetic lipid membranes.
Anal Chem. 2010 Sep 15;82(18):7766-71. doi: 10.1021/ac1016826.
3
Quantitative visualization of passive transport across bilayer lipid membranes.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14277-82. doi: 10.1073/pnas.0803720105. Epub 2008 Sep 11.
4
Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers.
Soft Matter. 2015 Jan 21;11(3):499-505. doi: 10.1039/c4sm01478b.
5
Effects of Mechanical Properties of Lipid Bilayers on the Entry of Cell-Penetrating Peptides into Single Vesicles.
Langmuir. 2017 Mar 7;33(9):2433-2443. doi: 10.1021/acs.langmuir.6b03111. Epub 2017 Feb 21.
6
Modulating lipid bilayer permeability and structure: Impact of hydrophobic chain length, C-3 hydroxyl group, and double bond in sphingosine.
J Colloid Interface Sci. 2024 Nov 15;674:513-526. doi: 10.1016/j.jcis.2024.06.171. Epub 2024 Jun 24.
7
Introducing a fluorescence-based standard to quantify protein partitioning into membranes.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt A):2932-41. doi: 10.1016/j.bbamem.2015.09.001. Epub 2015 Sep 2.

引用本文的文献

1
The Role of the Organic Moiety in the Diffusion and Transport of Carboxylates into Liposomes.
Molecules. 2024 Oct 30;29(21):5124. doi: 10.3390/molecules29215124.
2
Dynamic Second Harmonic Imaging of Proton Translocation Through Water Needles in Lipid Membranes.
J Am Chem Soc. 2024 Jul 24;146(29):19818-19827. doi: 10.1021/jacs.4c02810. Epub 2024 Jul 11.
3
How is Membrane Permeation of Small Ionizable Molecules Affected by Protonation Kinetics?
J Phys Chem B. 2024 Jan 25;128(3):795-811. doi: 10.1021/acs.jpcb.3c06765. Epub 2024 Jan 16.
4
Synthesis and Purification of Lipid-conjugated Fluorescent pH Sensors.
Bio Protoc. 2023 Jun 5;13(11):e4694. doi: 10.21769/BioProtoc.4694.
5
Oxylipin biosynthetic gene families of Cannabis sativa.
PLoS One. 2023 Apr 26;18(4):e0272893. doi: 10.1371/journal.pone.0272893. eCollection 2023.
6
Monitoring membranes: The exploration of biological bilayers with second harmonic generation.
Chem Phys Rev. 2022 Dec;3(4):041307. doi: 10.1063/5.0120888. Epub 2022 Dec 14.
7
Quantifying proton-induced membrane polarization in single biomimetic giant vesicles.
Biophys J. 2022 Jun 21;121(12):2223-2232. doi: 10.1016/j.bpj.2022.05.041. Epub 2022 May 28.
9
To Close or to Collapse: The Role of Charges on Membrane Stability upon Pore Formation.
Adv Sci (Weinh). 2021 Jun;8(11):e2004068. doi: 10.1002/advs.202004068. Epub 2021 Mar 8.

本文引用的文献

1
Confocal imaging to quantify passive transport across biomimetic lipid membranes.
Anal Chem. 2010 Sep 15;82(18):7766-71. doi: 10.1021/ac1016826.
2
No facilitator required for membrane transport of hydrogen sulfide.
Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16633-8. doi: 10.1073/pnas.0902952106. Epub 2009 Sep 11.
3
Quantitative visualization of passive transport across bilayer lipid membranes.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14277-82. doi: 10.1073/pnas.0803720105. Epub 2008 Sep 11.
4
Carbon dioxide transport through membranes.
J Biol Chem. 2008 Sep 12;283(37):25340-25347. doi: 10.1074/jbc.M800096200. Epub 2008 Jul 9.
6
7
A novel design of artificial membrane for improving the PAMPA model.
Pharm Res. 2008 Jul;25(7):1511-20. doi: 10.1007/s11095-007-9517-8. Epub 2008 Jan 10.
10
Permeation of aromatic carboxylic acids across lipid bilayers: the pH-partition hypothesis revisited.
Biophys J. 2005 Sep;89(3):1802-11. doi: 10.1529/biophysj.105.060871. Epub 2005 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验