Department of Physics, South Kensington Campus, Imperial College London, London SW7 2AZ, UK.
Philos Trans A Math Phys Eng Sci. 2011 Sep 13;369(1950):3525-50. doi: 10.1098/rsta.2011.0140.
Photonic metamaterials allow for a range of exciting applications unattainable with ordinary dielectrics. However, the metallic nature of their meta-atoms may result in increased optical losses. Gain-enhanced metamaterials are a potential solution to this problem, but the conception of realistic, three-dimensional designs is a challenging task. Starting from fundamental electrodynamic and quantum mechanical equations, we establish and deploy a rigorous theoretical model for the spatial and temporal interaction of lightwaves with free and bound electrons inside and around metallic (nano-) structures and gain media. The derived numerical framework allows us to self-consistently study the dynamics and impact of the coherent plasmon-gain interaction, nonlinear saturation, field enhancement, radiative damping and spatial dispersion. Using numerical pump-probe experiments on a double-fishnet metamaterial structure with dye molecule inclusions, we investigate the build-up of the inversion profile and the formation of the plasmonic modes in a low-Q cavity. We find that full loss compensation occurs in a regime where the real part of the effective refractive index of the metamaterial becomes more negative compared to the passive case. Our results provide a deep insight into how internal processes affect the overall optical properties of active photonic metamaterials fostering new approaches to the design of practical, loss-compensated plasmonic nanostructures.
光子超材料可以实现一系列普通介电材料无法实现的令人兴奋的应用。然而,其亚原子结构的金属性质可能导致光损耗增加。增益增强超材料是解决此问题的一种潜在方法,但实际的、三维设计的概念仍然是一项具有挑战性的任务。我们从基本的电磁动力学和量子力学方程出发,建立并部署了一个严格的理论模型,用于研究金属(纳米)结构和增益介质内部和周围的自由电子和束缚电子与光波的时空相互作用。所得到的数值框架允许我们自洽地研究相干等离子体增益相互作用、非线性饱和、场增强、辐射阻尼和空间色散的动力学和影响。通过对包含染料分子的双网眼超材料结构进行数值泵浦探测实验,我们研究了反转轮廓的建立和低 Q 腔中等离子体模式的形成。我们发现,在有效折射率的实部相对于无源情况变得更负的情况下,完全补偿了损耗。我们的结果深入了解了内部过程如何影响有源光子超材料的整体光学性质,从而为设计实用的、损耗补偿的等离子体纳米结构提供了新的方法。