Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
Phys Chem Chem Phys. 2011 Sep 21;13(35):15985-94. doi: 10.1039/c1cp21324e. Epub 2011 Aug 3.
A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy is applied to investigate the influence of an external silicalite-1 shell on the Brønsted acidity and coke formation process of individual H-ZSM-5 zeolite crystals. Three probe reactions were used: oligomerization of styrene, methanol-to-olefin (MTO) conversion and aromatization of light naphtha (LNA) derivatives. Oligomerization of styrene leads to the formation of optically active carbocationic oligomers. Different styrene substitutions indicate the conversion ability of the catalyst acid core, a preferred alignment of the oligomers within the straight zeolite channels and a Brønsted acidity gradient throughout the zeolite crystal. Both the MTO conversion and the LNA process lead to limited carbonaceous deposition within the external silicalite-1 layer. This outer shell furthermore prevents the growth of extended coke species at the zeolite external surface. During MTO, the formation of carbonaceous compounds initiates at the center of the H-ZSM-5 zeolite core and expands towards the zeolite exterior. This coke build-up starts with a 420 nm UV-Vis absorption band, assigned to methyl-substituted aromatic carbocations, and a second band around 550 nm, which is indicative of their growth towards larger conjugated systems. Aromatization of linear and branched C5 paraffins causes negligible darkening of the zeolite crystals though it forms fluorescent coke deposits and their precursors within the H-ZSM-5 catalyst. Olefin homologues on the contrary cause pronounced darkening of the zeolite composite. Methyl-branching of these reactants slows down the coke formation rate and produces carbonaceous species that are more restricted in their molecular size.
采用原位紫外可见和共聚焦荧光微光谱相结合的方法,研究了外部硅质壳层对单个 H-ZSM-5 沸石晶体的 Brønsted 酸性和积碳过程的影响。使用了三种探针反应:苯乙烯的齐聚反应、甲醇制烯烃(MTO)转化和轻石脑油(LNA)衍生物的芳构化。苯乙烯的齐聚反应导致形成具有光学活性的碳阳离子齐聚物。不同的苯乙烯取代基表明了催化剂酸核的转化能力、齐聚物在直沸石通道内的优选排列以及沸石晶体内的 Brønsted 酸度梯度。MTO 转化和 LNA 过程都导致在外部硅质壳层内的有限的碳质沉积。该外壳还防止了在沸石外部表面上扩展的积碳物种的生长。在 MTO 过程中,碳质化合物的形成始于 H-ZSM-5 沸石核的中心,并向沸石外部扩展。这种积碳的形成始于 420nm 的紫外可见吸收带,归因于甲基取代的芳基碳阳离子,以及大约 550nm 的第二个带,这表明它们向更大的共轭体系生长。线性和支链 C5 烷烃的芳构化虽然在 H-ZSM-5 催化剂内形成荧光积碳沉积物及其前体,但对沸石晶体几乎没有变暗作用。相反,烯烃同系物会导致沸石复合材料明显变暗。这些反应物的甲基支化会降低积碳形成速率,并产生在分子尺寸上受到限制的碳质物质。