Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America.
PLoS One. 2011;6(7):e22837. doi: 10.1371/journal.pone.0022837. Epub 2011 Jul 28.
Notch receptors are core components of the Notch signaling pathway and play a central role in cell fate decisions during development as well as tissue homeostasis. Upon ligand binding, Notch is sequentially cleaved at the S2 site by an ADAM protease and at the S3 site by the γ-secretase complex. Recent X-ray structures of the negative regulatory region (NRR) of the Notch receptor reveal an auto-inhibited fold where three protective Lin12/Notch repeats (LNR) of the NRR shield the S2 cleavage site housed in the heterodimerization (HD) domain. One of the models explaining how ligand binding drives the NRR conformation from a protease-resistant state to a protease-sensitive one invokes a mechanical force exerted on the NRR upon ligand endocytosis. Here, we combined physics-based atomistic simulations and topology-based coarse-grained modeling to investigate the intrinsic and force-induced folding and unfolding mechanisms of the human Notch1 NRR. The simulations support that external force applied to the termini of the NRR disengages the LNR modules from the heterodimerization (HD) domain in a well-defined, largely sequential manner. Importantly, the mechanical force can further drive local unfolding of the HD domain in a functionally relevant fashion that would provide full proteolytic access to the S2 site prior to heterodimer disassociation. We further analyzed local structural features, intrinsic folding free energy surfaces, and correlated motions of the HD domain. The results are consistent with a model in which the HD domain possesses inherent mechanosensing characteristics that could be utilized during Notch activation. This potential role of the HD domain in ligand-dependent Notch activation may have implications for understanding normal and aberrant Notch signaling.
Notch 受体是 Notch 信号通路的核心组成部分,在发育过程中的细胞命运决定以及组织稳态中发挥着核心作用。配体结合后,Notch 首先在 S2 位点被 ADAM 蛋白酶连续切割,然后在 S3 位点被γ-分泌酶复合物切割。最近 Notch 受体负调控区 (NRR) 的 X 射线结构揭示了一个自动抑制的折叠结构,其中 NRR 的三个保护性 Lin12/Notch 重复序列 (LNR) 保护了位于异二聚化 (HD) 结构域中的 S2 切割位点。解释配体结合如何将 NRR 构象从蛋白酶抗性状态转变为蛋白酶敏感性状态的一种模型涉及到配体内化时作用于 NRR 的机械力。在这里,我们结合基于物理的原子模拟和基于拓扑的粗粒化建模来研究人 Notch1 NRR 的固有和力诱导折叠和展开机制。模拟结果表明,施加在 NRR 末端的外力以明确的、主要是连续的方式将 LNR 模块与异二聚化 (HD) 结构域分离。重要的是,机械力可以以功能相关的方式进一步驱动 HD 结构域的局部展开,从而在异二聚体解离之前为 S2 位点提供充分的蛋白水解进入。我们进一步分析了 HD 结构域的局部结构特征、固有折叠自由能表面和相关运动。结果与一个模型一致,即 HD 结构域具有固有机械传感特性,可在 Notch 激活过程中被利用。HD 结构域在配体依赖性 Notch 激活中的这种潜在作用可能对理解正常和异常的 Notch 信号转导具有重要意义。