Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.
Biochemistry. 2011 Nov 8;50(44):9532-44. doi: 10.1021/bi200877x. Epub 2011 Oct 11.
MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from the bacterial menaquinone biosynthesis pathway, catalyzes an intramolecular Claisen condensation (Dieckmann reaction) in which the electrophile is an unactivated carboxylic acid. Mechanistic studies on this crotonase family member have been hindered by partial active site disorder in existing MenB X-ray structures. In the current work the 2.0 Å structure of O-succinylbenzoyl-aminoCoA (OSB-NCoA) bound to the MenB from Escherichia coli provides important insight into the catalytic mechanism by revealing the position of all active site residues. This has been accomplished by the use of a stable analogue of the O-succinylbenzoyl-CoA (OSB-CoA) substrate in which the CoA thiol has been replaced by an amine. The resulting OSB-NCoA is stable, and the X-ray structure of this molecule bound to MenB reveals the structure of the enzyme-substrate complex poised for carbon-carbon bond formation. The structural data support a mechanism in which two conserved active site Tyr residues, Y97 and Y258, participate directly in the intramolecular transfer of the substrate α-proton to the benzylic carboxylate of the substrate, leading to protonation of the electrophile and formation of the required carbanion. Y97 and Y258 are also ideally positioned to function as the second oxyanion hole required for stabilization of the tetrahedral intermediate formed during carbon-carbon bond formation. In contrast, D163, which is structurally homologous to the acid-base catalyst E144 in crotonase (enoyl-CoA hydratase), is not directly involved in carbanion formation and may instead play a structural role by stabilizing the loop that carries Y97. When similar studies were performed on the MenB from Mycobacterium tuberculosis, a twisted hexamer was unexpectedly observed, demonstrating the flexibility of the interfacial loops that are involved in the generation of the novel tertiary and quaternary structures found in the crotonase superfamily. This work reinforces the utility of using a stable substrate analogue as a mechanistic probe in which only one atom has been altered leading to a decrease in α-proton acidity.
MenB 是细菌甲萘醌生物合成途径中的 1,4-二羟基-2-萘酰基辅酶 A 合酶,催化分子内克莱森缩合(迪克曼反应),其中亲电试剂是未激活的羧酸。由于现有 MenB X 射线结构中部分活性位点紊乱,因此对该丙二酰辅酶 A 家族成员的机制研究受到了阻碍。在目前的工作中,与大肠杆菌中的 MenB 结合的 O-琥珀酰苯甲酰基-氨基 CoA(OSB-NCoA)的 2.0Å 结构通过揭示所有活性位点残基的位置,为催化机制提供了重要的见解。这是通过使用 O-琥珀酰苯甲酰-CoA(OSB-CoA)底物的稳定类似物来实现的,其中 CoA 巯基被胺取代。所得的 OSB-NCoA 是稳定的,并且该分子与 MenB 结合的 X 射线结构揭示了酶-底物复合物准备形成碳-碳键的结构。结构数据支持一种机制,其中两个保守的活性位点 Tyr 残基 Y97 和 Y258 直接参与将底物的α-质子转移到底物的苄基羧酸盐,导致亲电试剂质子化并形成所需的碳负离子。Y97 和 Y258 也非常适合作为形成碳-碳键形成过程中所需的四面体中间体所需的第二个氧阴离子空穴。相比之下,D163 在结构上与丙二酰辅酶 A 水合酶(烯酰辅酶 A 水合酶)中的酸碱催化剂 E144 同源,不直接参与碳负离子的形成,而是通过稳定携带 Y97 的环来发挥结构作用。当对结核分枝杆菌中的 MenB 进行类似的研究时,出乎意料地观察到扭曲的六聚体,这证明了参与产生新型三级和四级结构的界面环的灵活性Crotonase 超家族。这项工作加强了使用稳定的底物类似物作为机制探针的实用性,其中只有一个原子发生了改变,导致α-质子酸度降低。