Suppr超能文献

Atomic structure of As(2)S(3)-Ag chalcogenide glasses.

作者信息

Kaban I, Jóvári P, Wagner T, Frumar M, Stehlik S, Bartos M, Hoyer W, Beuneu B, Webb M A

机构信息

Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany.

出版信息

J Phys Condens Matter. 2009 Sep 30;21(39):395801. doi: 10.1088/0953-8984/21/39/395801. Epub 2009 Sep 8.

Abstract

(As(0.4)S(0.6))(100-x)Ag(x) glasses (x = 0, 4, 8, 12 at.%) have been studied with high-energy x-ray diffraction, neutron diffraction and extended x-ray absorption spectroscopy at As and Ag K-edges. The experimental data were modelled simultaneously with the reverse Monte Carlo simulation method. Analysis of the partial pair correlation functions and coordination numbers extracted from the model atomic configurations revealed that silver preferentially bonds to sulfur in the As(2)S(3)-Ag ternary glasses, which results in the formation of homoatomic As-As bonds. Upon the addition of Ag, a small proportion of Ag-As bonds (N(AgAs)≈0.3) are formed in all three ternary compositions, while the direct Ag-Ag bonds (N(AgAg)≈ 0.4) appear only in the glass with the highest Ag content (12 at.%). Similar to the g- As(2)S(3) binary, the mean coordination number of arsenic is close to three, and that of sulfur is close to two, in the As(2)S(3)-Ag ternary glasses. The first sharp diffraction peak on the total structure factors of As(2)S(3) binary and (As(0.4)S(0.6))(100-x)Ag(x) ternary glasses is related to the As-As and As-S correlations.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验