Genovesio Auguste, Kwon Yong-Jun, Windisch Marc P, Kim Nam Youl, Choi Seo Yeon, Kim Hi Chul, Jung Sungyong, Mammano Fabrizio, Perrin Virginie, Boese Annette S, Casartelli Nicoletta, Schwartz Olivier, Nehrbass Ulf, Emans Neil
Institut Pasteur-Korea, Gyeonggi-do, Korea.
J Biomol Screen. 2011 Oct;16(9):945-58. doi: 10.1177/1087057111415521. Epub 2011 Aug 12.
Recent genome-wide RNAi screens have identified >842 human genes that affect the human immunodeficiency virus (HIV) cycle. The list of genes implicated in infection differs between screens, and there is minimal overlap. A reason for this variance is the interdependence of HIV infection and host cell function, producing a multitude of indirect or pleiotropic cellular effects affecting the viral infection during RNAi screening. To overcome this, the authors devised a 15-dimensional phenotypic profile to define the viral infection block induced by CD4 silencing in HeLa cells. They demonstrate that this phenotypic profile excludes nonspecific, RNAi-based side effects and viral replication defects mediated by silencing of housekeeping genes. To achieve statistical robustness, the authors used automatically annotated RNAi arrays for seven independent genome-wide RNAi screens. This identified 56 host genes, which reliably reproduced CD4-like phenotypes upon HIV infection. The factors include 11 known HIV interactors and 45 factors previously not associated with HIV infection. As proof of concept, the authors confirmed that silencing of PAK1, Ku70, and RNAseH2A impaired HIV replication in Jurkat cells. In summary, multidimensional, visual profiling can identify genes required for HIV infection.
最近的全基因组RNA干扰筛选已经鉴定出超过842个影响人类免疫缺陷病毒(HIV)生命周期的人类基因。不同筛选中涉及感染的基因列表有所不同,且重叠极少。造成这种差异的一个原因是HIV感染与宿主细胞功能相互依存,在RNA干扰筛选过程中产生了许多影响病毒感染的间接或多效性细胞效应。为克服这一问题,作者设计了一个15维表型谱来定义HeLa细胞中CD4沉默诱导的病毒感染阻滞。他们证明,这种表型谱排除了非特异性的、基于RNA干扰的副作用以及由管家基因沉默介导的病毒复制缺陷。为实现统计稳健性,作者使用了自动注释的RNA干扰阵列进行七次独立的全基因组RNA干扰筛选。这确定了56个宿主基因,它们在HIV感染后能可靠地重现类似CD4的表型。这些因子包括11个已知的HIV相互作用蛋白和45个先前与HIV感染无关的因子。作为概念验证,作者证实了在Jurkat细胞中沉默PAK1、Ku70和RNAseH2A会损害HIV复制。总之,多维可视化分析可以识别HIV感染所需的基因。