Suppr超能文献

环阵换能器在实时 3D 超声引导心脏介入设备中的研究进展。

Progress in ring array transducers for real-time 3D ultrasound guidance of cardiac interventional devices.

机构信息

Department of Biomedical Engineering Duke University Durham, NC 27708, USA.

出版信息

Ultrason Imaging. 2011 Jul;33(3):197-204. doi: 10.1177/016173461103300304.

Abstract

As a treatment for aortic stenosis, several companies have recently introduced prosthetic heart valves designed to be deployed through a catheter using an intravenous or transapical approach. This procedure can either take the place of open heart surgery with some ofthe devices or delay it with others. Real-time 3D ultrasound could enable continuous monitoring of these structures before, during and after deployment. We have developed a 2D ring array integrated with a 30 French catheter that is used for transapical prosthetic heart valve implantation. The transducer array was built using three 46 cm long flex circuits from MicroConnex (Snoqualmie, WA) which terminate in an interconnect that plugs directly into our system cable; thus, no cable soldering is required. This transducer consists of 210 elements at 0.157 mm interelement spacing and operates at 5 MHz. Average measured element bandwidth was 26% and average round-trip 50 ohm insertion loss was -58.1 dB after correcting for diffractive losses. The transducer was wrapped around the 1 cm diameter lumen of a heart-valve deployment catheter. Prosthetic heart valve images were obtained in water-tank studies.

摘要

作为主动脉瓣狭窄的一种治疗方法,最近有几家公司推出了经导管植入的人工心脏瓣膜,可通过静脉或经心尖途径使用。该方法可以用一些设备替代开胸心脏手术,也可以用其他设备延迟手术。实时 3D 超声可以在部署前后对这些结构进行连续监测。我们已经开发出一种与 30 French 导管集成的 2D 环形阵列,用于经心尖人工心脏瓣膜植入。换能器阵列由 MicroConnex(华盛顿州斯诺夸尔米)的三个 46 厘米长的柔性电路组成,这些柔性电路的末端连接到一个直接插入我们系统电缆的接口,因此不需要进行电缆焊接。该换能器由 210 个元件组成,元件间距为 0.157 毫米,工作频率为 5 MHz。经过对衍射损耗的修正,平均测量元件带宽为 26%,平均往返 50 欧姆插入损耗为-58.1 dB。换能器缠绕在心脏瓣膜部署导管的 1 厘米直径管腔周围。在水箱研究中获得了人工心脏瓣膜图像。

相似文献

1
Progress in ring array transducers for real-time 3D ultrasound guidance of cardiac interventional devices.
Ultrason Imaging. 2011 Jul;33(3):197-204. doi: 10.1177/016173461103300304.
2
New fabrication techniques for ring-array transducers for real-time 3D intravascular ultrasound.
Ultrason Imaging. 2009 Oct;31(4):247-56. doi: 10.1177/016173460903100403.
3
Real-time 3D laparoscopic ultrasonography.
Ultrason Imaging. 2005 Jul;27(3):129-44. doi: 10.1177/016173460502700301.
4
Real-time 3-D ultrasound guidance of interventional devices.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Sep;55(9):2066-78. doi: 10.1109/TUFFC.898.
5
Integrated 3D Echo-X-Ray navigation to predict optimal angiographic deployment projections for TAVR.
JACC Cardiovasc Imaging. 2014 Aug;7(8):847-8. doi: 10.1016/j.jcmg.2014.01.022.
6
Echocardiography: guidance during valve implantation.
EuroIntervention. 2010 May;6 Suppl G:G14-9.
8
Dual lumen transducer probes for real-time 3-D interventional cardiac ultrasound.
Ultrasound Med Biol. 2003 Sep;29(9):1297-304. doi: 10.1016/s0301-5629(03)00952-9.
10
Transapical implantation of an Edwards Sapien valve into a failed prosthetic mitral valve 3 years after a transapical aortic valve implantation.
J Thorac Cardiovasc Surg. 2013 Feb;145(2):e19-21. doi: 10.1016/j.jtcvs.2012.10.010. Epub 2012 Oct 27.

引用本文的文献

1
Simultaneous Axial Multifocal Imaging Using a Single Acoustical Transmission: A Practical Implementation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Feb;66(2):273-284. doi: 10.1109/TUFFC.2018.2885080. Epub 2018 Dec 5.
2
Acoustical structured illumination for super-resolution ultrasound imaging.
Commun Biol. 2018;1:3. doi: 10.1038/s42003-017-0003-5. Epub 2018 Jan 22.
3
Ring array transducers for real-time 3-D imaging of an atrial septal occluder.
Ultrasound Med Biol. 2012 Aug;38(8):1483-7. doi: 10.1016/j.ultrasmedbio.2012.03.019. Epub 2012 Jun 12.

本文引用的文献

1
New fabrication techniques for ring-array transducers for real-time 3D intravascular ultrasound.
Ultrason Imaging. 2009 Oct;31(4):247-56. doi: 10.1177/016173460903100403.
4
High-speed ultrasound volumetric imaging system. II. Parallel processing and image display.
IEEE Trans Ultrason Ferroelectr Freq Control. 1991;38(2):109-15. doi: 10.1109/58.68467.
5
High-speed ultrasound volumetric imaging system. I. Transducer design and beam steering.
IEEE Trans Ultrason Ferroelectr Freq Control. 1991;38(2):100-8. doi: 10.1109/58.68466.
6
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7. doi: 10.1109/58.139123.
7
3-D ultrasound imaging using a forward-looking CMUT ring array for intravascular/intracardiac applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jun;53(6):1202-11. doi: 10.1109/tuffc.2006.1642519.
8
Real-time 3D laparoscopic ultrasonography.
Ultrason Imaging. 2005 Jul;27(3):129-44. doi: 10.1177/016173460502700301.
9
Decision-making in elderly patients with severe aortic stenosis: why are so many denied surgery?
Eur Heart J. 2005 Dec;26(24):2714-20. doi: 10.1093/eurheartj/ehi471. Epub 2005 Sep 1.
10
Real-time 3D transesophageal echocardiography.
Ultrason Imaging. 2004 Oct;26(4):217-32. doi: 10.1177/016173460402600402.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验